These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 36228894)

  • 61. Neural dynamics during repetitive visual stimulation.
    Tsoneva T; Garcia-Molina G; Desain P
    J Neural Eng; 2015 Dec; 12(6):066017. PubMed ID: 26479469
    [TBL] [Abstract][Full Text] [Related]  

  • 62. An online hybrid BCI system based on SSVEP and EMG.
    Lin K; Cinetto A; Wang Y; Chen X; Gao S; Gao X
    J Neural Eng; 2016 Apr; 13(2):026020. PubMed ID: 26902294
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effect of alpha range activity on SSVEP decoding in brain-computer interfaces.
    Zehra SR; Mu J; Burkitt AN; Grayden DB
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083637
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Adaptive SSVEP-based BCI system with frequency and pulse duty-cycle stimuli tuning design.
    Shyu KK; Chiu YJ; Lee PL; Liang JM; Peng SH
    IEEE Trans Neural Syst Rehabil Eng; 2013 Sep; 21(5):697-703. PubMed ID: 23744702
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Training -Free Steady-State Visual Evoked Potential Brain-Computer Interface Based on Filter Bank Canonical Correlation Analysis and Spatiotemporal Beamforming Decoding.
    Ge S; Jiang Y; Wang P; Wang H; Zheng W
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1714-1723. PubMed ID: 31403435
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Compact convolutional neural networks for classification of asynchronous steady-state visual evoked potentials.
    Waytowich N; Lawhern VJ; Garcia JO; Cummings J; Faller J; Sajda P; Vettel JM
    J Neural Eng; 2018 Dec; 15(6):066031. PubMed ID: 30279309
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Developing stimulus presentation on mobile devices for a truly portable SSVEP-based BCI.
    Wang YT; Wang Y; Cheng CK; Jung TP
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5271-4. PubMed ID: 24110925
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A gaze independent hybrid-BCI based on visual spatial attention.
    Egan JM; Loughnane GM; Fletcher H; Meade E; Lalor EC
    J Neural Eng; 2017 Aug; 14(4):046006. PubMed ID: 28513478
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Assessment of high-frequency steady-state visual evoked potentials from below-the-hairline areas for a brain-computer interface based on Depth-of-Field.
    Floriano A; Delisle-Rodriguez D; Diez PF; Bastos-Filho TF
    Comput Methods Programs Biomed; 2020 Feb; 184():105271. PubMed ID: 31881401
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface.
    Chen X; Wang Y; Gao S; Jung TP; Gao X
    J Neural Eng; 2015 Aug; 12(4):046008. PubMed ID: 26035476
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A multi-day and multi-band dataset for a steady-state visual-evoked potential-based brain-computer interface.
    Choi GY; Han CH; Jung YJ; Hwang HJ
    Gigascience; 2019 Nov; 8(11):. PubMed ID: 31765472
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A novel command generation method for SSVEP-based BCI by introducing SSVEP blocking response.
    Yuan X; Zhang L; Sun Q; Lin X; Li C
    Comput Biol Med; 2022 Jul; 146():105521. PubMed ID: 35500376
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A SSVEP-Based Brain-Computer Interface With Low-Pixel Density of Stimuli.
    Meng J; Liu H; Wu Q; Zhou H; Shi W; Meng L; Xu M; Ming D
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4439-4448. PubMed ID: 37906489
    [TBL] [Abstract][Full Text] [Related]  

  • 74. High Frequency SSVEP-BCI With Hardware Stimuli Control and Phase-Synchronized Comb Filter.
    Chabuda A; Durka P; Zygierewicz J
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):344-352. PubMed ID: 28961117
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Utilizing Retinotopic Mapping for a Multi-Target SSVEP BCI With a Single Flicker Frequency.
    Maye A; Zhang D; Engel AK
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):1026-1036. PubMed ID: 28459691
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Optimization of Checkerboard Spatial Frequencies for Steady-State Visual Evoked Potential Brain-Computer Interfaces.
    Waytowich NR; Yamani Y; Krusienski DJ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):557-565. PubMed ID: 27542113
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Assisted closed-loop optimization of SSVEP-BCI efficiency.
    Fernandez-Vargas J; Pfaff HU; Rodríguez FB; Varona P
    Front Neural Circuits; 2013; 7():27. PubMed ID: 23443214
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Brain stimulation with 40 Hz heterochromatic flicker extended beyond red, green, and blue.
    Henney MA; Carstensen M; Thorning-Schmidt M; Kubińska M; Grønberg MG; Nguyen M; Madsen KH; Clemmensen LKH; Petersen PM
    Sci Rep; 2024 Jan; 14(1):2147. PubMed ID: 38273009
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Enhancing Detection of SSVEPs with Intermodulation Frequencies Using Individual Calibration Data.
    Chen X; Wang Y; Zhang S; Gao X
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2531-2534. PubMed ID: 30440923
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Towards solving of the Illiteracy phenomenon for VEP-based brain-computer interfaces.
    Volosyak I; Rezeika A; Benda M; Gembler F; Stawicki P
    Biomed Phys Eng Express; 2020 May; 6(3):035034. PubMed ID: 33438679
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.