These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 36228894)

  • 81. Multi-command SSVEP-based BCI system via single flickering frequency half-field stimulation pattern.
    Punsawad Y; Wongsawat Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1101-4. PubMed ID: 22254506
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Instant classification for the spatially-coded BCI.
    Maÿe A; Rauterberg R; Engel AK
    PLoS One; 2022; 17(4):e0267548. PubMed ID: 35482705
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Evaluate the Feasibility of Using Frontal SSVEP to Implement an SSVEP-Based BCI in Young, Elderly and ALS Groups.
    Hsu HT; Lee IH; Tsai HT; Chang HC; Shyu KK; Hsu CC; Chang HH; Yeh TK; Chang CY; Lee PL
    IEEE Trans Neural Syst Rehabil Eng; 2016 May; 24(5):603-15. PubMed ID: 26625417
    [TBL] [Abstract][Full Text] [Related]  

  • 84. An independent brain-computer interface using covert non-spatial visual selective attention.
    Zhang D; Maye A; Gao X; Hong B; Engel AK; Gao S
    J Neural Eng; 2010 Feb; 7(1):16010. PubMed ID: 20083864
    [TBL] [Abstract][Full Text] [Related]  

  • 85. A high-speed brain speller using steady-state visual evoked potentials.
    Nakanishi M; Wang Y; Wang YT; Mitsukura Y; Jung TP
    Int J Neural Syst; 2014 Sep; 24(6):1450019. PubMed ID: 25081427
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Classification of binary intentions for individuals with impaired oculomotor function: 'eyes-closed' SSVEP-based brain-computer interface (BCI).
    Lim JH; Hwang HJ; Han CH; Jung KY; Im CH
    J Neural Eng; 2013 Apr; 10(2):026021. PubMed ID: 23528484
    [TBL] [Abstract][Full Text] [Related]  

  • 87. The effect of stimulus number on the recognition accuracy and information transfer rate of SSVEP-BCI in augmented reality.
    Zhang R; Xu Z; Zhang L; Cao L; Hu Y; Lu B; Shi L; Yao D; Zhao X
    J Neural Eng; 2022 May; 19(3):. PubMed ID: 35477130
    [No Abstract]   [Full Text] [Related]  

  • 88. Visual spatial attention tracking using high-density SSVEP data for independent brain-computer communication.
    Kelly SP; Lalor EC; Reilly RB; Foxe JJ
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):172-8. PubMed ID: 16003896
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Comparison between wire and wireless EEG acquisition systems based on SSVEP in an Independent-BCI.
    Tello RM; Müller SM; Bastos-Filho T; Ferreira A
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():22-5. PubMed ID: 25569887
    [TBL] [Abstract][Full Text] [Related]  

  • 90. A high-frequency SSVEP-BCI system based on a 360 Hz refresh rate.
    Liu K; Yao Z; Zheng L; Wei Q; Pei W; Gao X; Wang Y
    J Neural Eng; 2023 Aug; 20(4):. PubMed ID: 37604119
    [No Abstract]   [Full Text] [Related]  

  • 91. Tradeoff between User Experience and BCI Classification Accuracy with Frequency Modulated Steady-State Visual Evoked Potentials.
    Dreyer AM; Herrmann CS; Rieger JW
    Front Hum Neurosci; 2017; 11():391. PubMed ID: 28798676
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Prediction of SSVEP-based BCI performance by the resting-state EEG network.
    Zhang Y; Xu P; Guo D; Yao D
    J Neural Eng; 2013 Dec; 10(6):066017. PubMed ID: 24280591
    [TBL] [Abstract][Full Text] [Related]  

  • 93. An online SSVEP-BCI system in an optical see-through augmented reality environment.
    Ke Y; Liu P; An X; Song X; Ming D
    J Neural Eng; 2020 Feb; 17(1):016066. PubMed ID: 31614342
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Error Correction Regression Framework for Enhancing the Decoding Accuracies of Ear-EEG Brain-Computer Interfaces.
    Kwak NS; Lee SW
    IEEE Trans Cybern; 2020 Aug; 50(8):3654-3667. PubMed ID: 31295141
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Enhanced System Robustness of Asynchronous BCI in Augmented Reality Using Steady-State Motion Visual Evoked Potential.
    Ravi A; Lu J; Pearce S; Jiang N
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():85-95. PubMed ID: 34990366
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Towards a Portable Magnetoencephalography Based Brain Computer Interface with Optically-Pumped Magnetometers.
    Paek AY; Kilicarslan A; Korenko B; Gerginov V; Knappe S; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3420-3423. PubMed ID: 33018738
    [TBL] [Abstract][Full Text] [Related]  

  • 97. The Role of Visual Noise in Influencing Mental Load and Fatigue in a Steady-State Motion Visual Evoked Potential-Based Brain-Computer Interface.
    Xie J; Xu G; Luo A; Li M; Zhang S; Han C; Yan W
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28805731
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Bidirectional Siamese correlation analysis method for enhancing the detection of SSVEPs.
    Zhang X; Qiu S; Zhang Y; Wang K; Wang Y; He H
    J Neural Eng; 2022 Aug; 19(4):. PubMed ID: 35853437
    [No Abstract]   [Full Text] [Related]  

  • 99. Improving the Performance of Individually Calibrated SSVEP-BCI by Task- Discriminant Component Analysis.
    Liu B; Chen X; Shi N; Wang Y; Gao S; Gao X
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1998-2007. PubMed ID: 34543200
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Decoding of responses to mixed frequency and phase coded visual stimuli using multiset canonical correlation analysis.
    Suefusa K; Tanaka T
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1492-1495. PubMed ID: 28268609
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.