These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 36228894)
101. Rapid invisible frequency tagging reveals nonlinear integration of auditory and visual information. Drijvers L; Jensen O; Spaak E Hum Brain Mapp; 2021 Mar; 42(4):1138-1152. PubMed ID: 33206441 [TBL] [Abstract][Full Text] [Related]
102. Assessing the influence of visual stimulus properties on steady-state visually evoked potentials and pupil diameter. Eisma YB; van Vliet ST; Nederveen AJ; de Winter JCF Biomed Phys Eng Express; 2024 Oct; 10(6):. PubMed ID: 39401512 [TBL] [Abstract][Full Text] [Related]
103. [Key technologies for intelligent brain-computer interaction based on magnetoencephalography]. Xu H; Gong A; Ding P; Luo J; Chen C; Fu Y Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Feb; 39(1):198-206. PubMed ID: 35231982 [TBL] [Abstract][Full Text] [Related]
105. Multiband task related components enhance rapid cognition decoding for both small and similar objects. Zhou Y; Yang B; Wang C Neural Netw; 2024 Jul; 175():106313. PubMed ID: 38640695 [TBL] [Abstract][Full Text] [Related]
106. Impact of Stimulus Features on the Performance of a Gaze-Independent Brain-Computer Interface Based on Covert Spatial Attention Shifts. Reichert C; Tellez Ceja IF; Sweeney-Reed CM; Heinze HJ; Hinrichs H; Dürschmid S Front Neurosci; 2020; 14():591777. PubMed ID: 33335470 [TBL] [Abstract][Full Text] [Related]
107. Non-invasive measurement of rat auditory evoked fields using an optically pumped atomic magnetometer: Effects of task manipulation. Ruan Y; Xiang Z; Lu G; Chen Y; Liu Y; Liu F; Wang J; Zhang Y; Yao J; Liu Y; Lin Q Heliyon; 2024 Jun; 10(11):e31740. PubMed ID: 38845884 [TBL] [Abstract][Full Text] [Related]
108. Rhythmic visual stimulation as a window into early brain development: A systematic review. Köster M; Brzozowska A; Bánki A; Tünte M; Ward EK; Hoehl S Dev Cogn Neurosci; 2023 Dec; 64():101315. PubMed ID: 37948945 [TBL] [Abstract][Full Text] [Related]
109. Application of rapid invisible frequency tagging for brain computer interfaces. Brickwedde M; Bezsudnova Y; Kowalczyk A; Jensen O; Zhigalov A J Neurosci Methods; 2022 Dec; 382():109726. PubMed ID: 36228894 [TBL] [Abstract][Full Text] [Related]
110. Optimal parameters for rapid (invisible) frequency tagging using MEG. Minarik T; Berger B; Jensen O Neuroimage; 2023 Nov; 281():120389. PubMed ID: 37751812 [TBL] [Abstract][Full Text] [Related]
111. An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces. Chang MH; Baek HJ; Lee SM; Park KS Clin Neurophysiol; 2014 Jul; 125(7):1380-91. PubMed ID: 24368034 [TBL] [Abstract][Full Text] [Related]
112. Decoding emotion from high-frequency steady state visual evoked potential (SSVEP). Nie L; Ku Y J Neurosci Methods; 2023 Jul; 395():109919. PubMed ID: 37422072 [TBL] [Abstract][Full Text] [Related]
113. A user-friendly visual brain-computer interface based on high-frequency steady-state visual evoked fields recorded by OPM-MEG. Ji D; Xiao X; Wu J; He X; Zhang G; Guo R; Liu M; Xu M; Lin Q; Jung TP; Ming D J Neural Eng; 2024 May; 21(3):. PubMed ID: 38812288 [No Abstract] [Full Text] [Related]
114. Rapid invisible frequency tagging (RIFT): a promising technique to study neural and cognitive processing using naturalistic paradigms. Seijdel N; Marshall TR; Drijvers L Cereb Cortex; 2023 Feb; 33(5):1626-1629. PubMed ID: 35452080 [TBL] [Abstract][Full Text] [Related]