These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 36229632)

  • 21. Testing the underlying processes leading to learned distractor rejection: Learned oculomotor avoidance.
    Stilwell BT; Vecera SP
    Atten Percept Psychophys; 2022 Aug; 84(6):1964-1981. PubMed ID: 35386017
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Distinct roles of the intraparietal sulcus and temporoparietal junction in attentional capture from distractor features: An individual differences approach.
    Painter DR; Dux PE; Mattingley JB
    Neuropsychologia; 2015 Jul; 74():50-62. PubMed ID: 25724234
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cuing the dimension of a distractor: verbal cues of target identity also benefit same-dimension distractor singletons.
    Meeter M; Theeuwes J
    Psychon Bull Rev; 2006 Feb; 13(1):118-24. PubMed ID: 16724778
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flexible weighting of target features based on distractor context.
    Lee J; Geng JJ
    Atten Percept Psychophys; 2020 Feb; 82(2):739-751. PubMed ID: 31741317
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rejecting salient distractors: Generalization from experience.
    Vatterott DB; Mozer MC; Vecera SP
    Atten Percept Psychophys; 2018 Feb; 80(2):485-499. PubMed ID: 29230673
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Top-down knowledge surpasses selection history in influencing attentional guidance.
    GrĂ¼ner M; Goller F; Ansorge U
    Atten Percept Psychophys; 2023 May; 85(4):985-1011. PubMed ID: 36694074
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The cued recognition task: dissociating the abrupt onset effect from the social and arrow cueing effect.
    Xu B; Tanaka JW
    Atten Percept Psychophys; 2015 Jan; 77(1):97-110. PubMed ID: 25190323
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Statistical learning of distractor locations is dependent on task context.
    de Waard J; van Moorselaar D; Bogaerts L; Theeuwes J
    Sci Rep; 2023 Jul; 13(1):11234. PubMed ID: 37433849
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Probing early attention following negative and positive templates.
    Zhang Z; Gapelin N; Carlisle NB
    Atten Percept Psychophys; 2020 Jun; 82(3):1166-1175. PubMed ID: 31650519
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of target and distractor heterogeneity on search for a color target.
    Nagy AL; Neriani KE; Young TL
    Vision Res; 2005 Jun; 45(14):1885-99. PubMed ID: 15797778
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Decomposing experience-driven attention: Opposite attentional effects of previously predictive cues.
    Lin Z; Lu ZL; He S
    Atten Percept Psychophys; 2016 Oct; 78(7):2185-98. PubMed ID: 27068051
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surprisingly inflexible: Statistically learned suppression of distractors generalizes across contexts.
    de Waard J; Bogaerts L; van Moorselaar D; Theeuwes J
    Atten Percept Psychophys; 2022 Feb; 84(2):459-473. PubMed ID: 34862588
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Feature-based statistical regularities of distractors modulate attentional capture.
    Stilwell BT; Bahle B; Vecera SP
    J Exp Psychol Hum Percept Perform; 2019 Mar; 45(3):419-433. PubMed ID: 30802131
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oscillatory Mechanisms of Preparing for Visual Distraction.
    de Vries IEJ; Savran E; van Driel J; Olivers CNL
    J Cogn Neurosci; 2019 Dec; 31(12):1873-1894. PubMed ID: 31418334
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Altering spatial priority maps via statistical learning of target selection and distractor filtering.
    Ferrante O; Patacca A; Di Caro V; Della Libera C; Santandrea E; Chelazzi L
    Cortex; 2018 May; 102():67-95. PubMed ID: 29096874
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Statistical learning of distractor co-occurrences facilitates visual search.
    Thorat S; Quek GL; Peelen MV
    J Vis; 2022 Sep; 22(10):2. PubMed ID: 36053133
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Suppression of distracting inputs by visual-spatial cues is driven by anticipatory alpha activity.
    Zhao C; Kong Y; Li D; Huang J; Kong L; Li X; Jensen O; Song Y
    PLoS Biol; 2023 Mar; 21(3):e3002014. PubMed ID: 36888690
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Is perceptual learning always better at task-relevant locations? It depends on the distractors.
    Singhal I; Srinivasan N
    Atten Percept Psychophys; 2022 Apr; 84(3):992-1003. PubMed ID: 35217980
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Negative cues lead to more inefficient search than positive cues even at later stages of visual search.
    Kawashima T; Matsumoto E
    Acta Psychol (Amst); 2018 Oct; 190():85-94. PubMed ID: 30036747
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A configural dominant account of contextual cueing: Configural cues are stronger than colour cues.
    Kunar MA; John R; Sweetman H
    Q J Exp Psychol (Hove); 2014; 67(7):1366-82. PubMed ID: 24199842
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.