These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36229644)

  • 1. Estimation of systolic blood pressure by Random Forest using heart sounds and a ballistocardiogram.
    Gonzalez-Landaeta R; Ramirez B; Mejia J
    Sci Rep; 2022 Oct; 12(1):17196. PubMed ID: 36229644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ballistocardiogram-Based Approach to Cuffless Blood Pressure Monitoring: Proof of Concept and Potential Challenges.
    Kim CS; Carek AM; Inan OT; Mukkamala R; Hahn JO
    IEEE Trans Biomed Eng; 2018 Nov; 65(11):2384-2391. PubMed ID: 29993523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous Tracking of Changes in Systolic Blood Pressure using BCG and ECG.
    He S; Dajani HR; Meade RD; Kenny GP; Bolic M
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6826-6829. PubMed ID: 31947408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Potential of Wearable Limb Ballistocardiogram in Blood Pressure Monitoring via Pulse Transit Time.
    Yousefian P; Shin S; Mousavi A; Kim CS; Mukkamala R; Jang DG; Ko BH; Lee J; Kwon UK; Kim YH; Hahn JO
    Sci Rep; 2019 Jul; 9(1):10666. PubMed ID: 31337783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of transit time-based models in wearable central aortic blood pressure estimation.
    Fierro G; Armentano R; Silveira F
    Biomed Phys Eng Express; 2020 Mar; 6(3):035006. PubMed ID: 33438651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ballistocardiogram as Proximal Timing Reference for Pulse Transit Time Measurement: Potential for Cuffless Blood Pressure Monitoring.
    Kim CS; Carek AM; Mukkamala R; Inan OT; Hahn JO
    IEEE Trans Biomed Eng; 2015 Nov; 62(11):2657-64. PubMed ID: 26054058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Unified Approach to Wearable Ballistocardiogram Gating and Wave Localization.
    Shin S; Yousefian P; Mousavi AS; Kim CS; Mukkamala R; Jang DG; Ko BH; Lee J; Kwon UK; Kim YH; Hahn JO
    IEEE Trans Biomed Eng; 2021 Apr; 68(4):1115-1122. PubMed ID: 32746068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unobtrusive Estimation of Cardiovascular Parameters with Limb Ballistocardiography.
    Yao Y; Shin S; Mousavi A; Kim CS; Xu L; Mukkamala R; Hahn JO
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31266256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous cuffless and non-invasive measurement of arterial blood pressure-concepts and future perspectives.
    Pilz N; Patzak A; Bothe TL
    Blood Press; 2022 Dec; 31(1):254-269. PubMed ID: 36184775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Causal inference based cuffless blood pressure estimation: A pilot study.
    Liu L; Zhang YT; Wang W; Chen Y; Ding X
    Comput Biol Med; 2023 Jun; 159():106900. PubMed ID: 37087777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signals.
    Zhang Q; Zhou D; Zeng X
    Biomed Eng Online; 2017 Feb; 16(1):23. PubMed ID: 28166774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cuffless and Touchless Measurement of Blood Pressure from Ballistocardiogram Based on a Body Weight Scale.
    Liu SH; Zhang BH; Chen W; Su CH; Chin CL
    Nutrients; 2022 Jun; 14(12):. PubMed ID: 35745282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel method for non-invasive blood pressure estimation based on continuous pulse transit time: An observational study.
    Shin H
    Psychophysiology; 2023 Feb; 60(2):e14173. PubMed ID: 36073769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blood Pressure Monitoring System Using a Two-Channel Ballistocardiogram and Convolutional Neural Networks.
    Seok W; Lee KJ; Cho D; Roh J; Kim S
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33806118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-constrained monitoring of systolic blood pressure on a weighing scale.
    Shin JH; Lee KM; Park KS
    Physiol Meas; 2009 Jul; 30(7):679-93. PubMed ID: 19525570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Chair-Based Unconstrained/Nonintrusive Cuffless Blood Pressure Monitoring System Using a Two-Channel Ballistocardiogram.
    Lee KJ; Roh J; Cho D; Hyeong J; Kim S
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30708934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of cuffless blood pressure estimation method based on multiple physiological parameters.
    Zhang Y; Zhou C; Huang Z; Ye X
    Physiol Meas; 2021 Jun; 42(5):. PubMed ID: 33857923
    [No Abstract]   [Full Text] [Related]  

  • 18. Pulse Arrival Time Segmentation Into Cardiac and Vascular Intervals - Implications for Pulse Wave Velocity and Blood Pressure Estimation.
    Beutel F; Van Hoof C; Rottenberg X; Reesink K; Hermeling E
    IEEE Trans Biomed Eng; 2021 Sep; 68(9):2810-2820. PubMed ID: 33513094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A chair based ballistocardiogram time interval measurement with cardiovascular provocations.
    Rajala S; Ahmaniemi T; Lindholm H; Muller K; Taipalus T
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5685-5688. PubMed ID: 30441626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of Real-Time Cuffless Blood Pressure Measurement Systems with ECG Electrodes and a Microphone Using Pulse Transit Time (PTT).
    Choi J; Kang Y; Park J; Joung Y; Koo C
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.