BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 36229651)

  • 1. A data-science approach to predict the heat capacity of nanoporous materials.
    Moosavi SM; Novotny BÁ; Ongari D; Moubarak E; Asgari M; Kadioglu Ö; Charalambous C; Ortega-Guerrero A; Farmahini AH; Sarkisov L; Garcia S; Noé F; Smit B
    Nat Mater; 2022 Dec; 21(12):1419-1425. PubMed ID: 36229651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Diaminopropane-Appended Metal-Organic Framework Enabling Efficient CO
    Milner PJ; Siegelman RL; Forse AC; Gonzalez MI; Runčevski T; Martell JD; Reimer JA; Long JR
    J Am Chem Soc; 2017 Sep; 139(38):13541-13553. PubMed ID: 28906108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water Enables Efficient CO
    Siegelman RL; Milner PJ; Forse AC; Lee JH; Colwell KA; Neaton JB; Reimer JA; Weston SC; Long JR
    J Am Chem Soc; 2019 Aug; 141(33):13171-13186. PubMed ID: 31348649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclic stability testing of aminated-silica solid sorbent for post-combustion CO2 capture.
    Fisher JC; Gray M
    ChemSusChem; 2015 Feb; 8(3):452-5. PubMed ID: 25510438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The oxycoal process with cryogenic oxygen supply.
    Kather A; Scheffknecht G
    Naturwissenschaften; 2009 Sep; 96(9):993-1010. PubMed ID: 19495717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning Prediction on Properties of Nanoporous Materials Utilizing Pore Geometry Barcodes.
    Zhang X; Cui J; Zhang K; Wu J; Lee Y
    J Chem Inf Model; 2019 Nov; 59(11):4636-4644. PubMed ID: 31661958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel regenerable sorbent for mercury capture from flue gases of coal-fired power plant.
    Liu Y; Kelly DJ; Yang H; Lin CC; Kuznicki SM; Xu Z
    Environ Sci Technol; 2008 Aug; 42(16):6205-10. PubMed ID: 18767688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of mercury in flue gas based on an aluminum matrix sorbent.
    Wang J; Xu W; Wang X; Wang W
    ScientificWorldJournal; 2011; 11():2469-79. PubMed ID: 22235178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorbents for capturing mercury in coal-fired boiler flue gas.
    Yang H; Xu Z; Fan M; Bland AE; Judkins RR
    J Hazard Mater; 2007 Jul; 146(1-2):1-11. PubMed ID: 17544578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative studies of carbon capture onto coal fly ash zeolites Na-X and Na-Ca-X.
    Boycheva S; Zgureva D; Lazarova H; Popova M
    Chemosphere; 2021 May; 271():129505. PubMed ID: 33450419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silica-Silver Nanocomposites as Regenerable Sorbents for Hg
    Cao T; Li Z; Xiong Y; Yang Y; Xu S; Bisson T; Gupta R; Xu Z
    Environ Sci Technol; 2017 Oct; 51(20):11909-11917. PubMed ID: 28823171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of particle emissions and their atmospheric dilution during co-combustion of coal and wood pellets in a large combined heat and power plant.
    Mylläri F; Pirjola L; Lihavainen H; Asmi E; Saukko E; Laurila T; Vakkari V; O'Connor E; Rautiainen J; Häyrinen A; Niemelä V; Maunula J; Hillamo R; Keskinen J; Rönkkö T
    J Air Waste Manag Assoc; 2019 Jan; 69(1):97-108. PubMed ID: 30204539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selenium Functionalized Metal-Organic Framework MIL-101 for Efficient and Permanent Sequestration of Mercury.
    Yang J; Zhu W; Qu W; Yang Z; Wang J; Zhang M; Li H
    Environ Sci Technol; 2019 Feb; 53(4):2260-2268. PubMed ID: 30673273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of a high-throughput analyzer in evaluating solid adsorbents for post-combustion carbon capture via multicomponent adsorption of CO2, N2, and H2O.
    Mason JA; McDonald TM; Bae TH; Bachman JE; Sumida K; Dutton JJ; Kaye SS; Long JR
    J Am Chem Soc; 2015 Apr; 137(14):4787-803. PubMed ID: 25844924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of organic structure directing agents to control the synthesis of zeolites for carbon capture and storage.
    Daeyaert F; Deem MW
    RSC Adv; 2019 Dec; 9(71):41934-41942. PubMed ID: 35541618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High performance CO
    Mankar JS; Rayalu SS; Balasubramanian R; Krupadam RJ
    Chemosphere; 2021 Dec; 284():131405. PubMed ID: 34225122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular simulations for energy, environmental and pharmaceutical applications of nanoporous materials: from zeolites, metal-organic frameworks to protein crystals.
    Jiang J; Babarao R; Hu Z
    Chem Soc Rev; 2011 Jul; 40(7):3599-612. PubMed ID: 21512695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on the characteristics of nitrogen dioxide adsorption and storage of coal residue in coal-fired power plants in goaf.
    Wang X; Qiao L; Deng C; Chu G; Li X; Zhao Q; Wang G
    Sci Rep; 2021 Apr; 11(1):8822. PubMed ID: 33893336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regenerable sorbents for mercury capture in simulated coal combustion flue gas.
    Rodríguez-Pérez J; López-Antón MA; Díaz-Somoano M; García R; Martínez-Tarazona MR
    J Hazard Mater; 2013 Sep; 260():869-77. PubMed ID: 23876255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MOF-derived nanoporous carbons with diverse tunable nanoarchitectures.
    Kim M; Xin R; Earnshaw J; Tang J; Hill JP; Ashok A; Nanjundan AK; Kim J; Young C; Sugahara Y; Na J; Yamauchi Y
    Nat Protoc; 2022 Dec; 17(12):2990-3027. PubMed ID: 36064756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.