These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 36229919)
1. Assigning pathogenicity for TAB2 variants using a novel scalable functional assay and expanding TAB2 disease spectrum. Xu W; Graves A; Weisz-Hubshman M; Hegazy L; Magyar C; Liu Z; Nasiotis E; Samee MAH; Burris T; Lalani S; Zhang L Hum Mol Genet; 2023 Mar; 32(6):959-970. PubMed ID: 36229919 [TBL] [Abstract][Full Text] [Related]
2. There is more to it than just congenital heart defects - The phenotypic spectrum of TAB2-related syndrome. Westphal DS; Mastantuono E; Seidel H; Riedhammer KM; Hahn A; Vill K; Wagner M Gene; 2022 Mar; 814():146167. PubMed ID: 34995729 [TBL] [Abstract][Full Text] [Related]
3. A novel TAB2 nonsense mutation (p.S149X) causing autosomal dominant congenital heart defects: a case report of a Chinese family. Chen J; Yuan H; Xie K; Wang X; Tan L; Zou Y; Yang Y; Pan L; Xiao J; Chen G; Liu Y BMC Cardiovasc Disord; 2020 Jan; 20(1):27. PubMed ID: 31959127 [TBL] [Abstract][Full Text] [Related]
4. Loss-of-function variants in exon 4 of TAB2 cause a recognizable multisystem disorder with cardiovascular, facial, cutaneous, and musculoskeletal involvement. Micale L; Morlino S; Carbone A; Carissimo A; Nardella G; Fusco C; Palumbo O; Schirizzi A; Russo F; Mazzoccoli G; Breckpot J; De Luca C; Ferraris A; Giunta C; Grammatico P; Haanpää MK; Mancano G; Forzano G; Cacchiarelli D; Van Esch H; Callewaert B; Rohrbach M; Castori M Genet Med; 2022 Feb; 24(2):439-453. PubMed ID: 34906501 [TBL] [Abstract][Full Text] [Related]
5. Expanding the phenotype of TAB2 variants and literature review. Woods E; Marson I; Coci E; Spiller M; Kumar A; Brady A; Homfray T; Fisher R; Turnpenny P; Rankin J; Kanani F; Platzer K; Ververi A; Emmanouilidou E; Bourboun N; Giannakoulas G; Balasubramanian M Am J Med Genet A; 2022 Nov; 188(11):3331-3342. PubMed ID: 35971781 [TBL] [Abstract][Full Text] [Related]
7. Cysteine methylation disrupts ubiquitin-chain sensing in NF-κB activation. Zhang L; Ding X; Cui J; Xu H; Chen J; Gong YN; Hu L; Zhou Y; Ge J; Lu Q; Liu L; Chen S; Shao F Nature; 2011 Dec; 481(7380):204-8. PubMed ID: 22158122 [TBL] [Abstract][Full Text] [Related]
8. Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by NZF domains of TAB2 and TAB3. Sato Y; Yoshikawa A; Yamashita M; Yamagata A; Fukai S EMBO J; 2009 Dec; 28(24):3903-9. PubMed ID: 19927120 [TBL] [Abstract][Full Text] [Related]
9. A recognizable systemic connective tissue disorder with polyvalvular heart dystrophy and dysmorphism associated with TAB2 mutations. Ritelli M; Morlino S; Giacopuzzi E; Bernardini L; Torres B; Santoro G; Ravasio V; Chiarelli N; D'Angelantonio D; Novelli A; Grammatico P; Colombi M; Castori M Clin Genet; 2018 Jan; 93(1):126-133. PubMed ID: 28386937 [TBL] [Abstract][Full Text] [Related]
10. Haploinsufficiency of TAB2 causes congenital heart defects in humans. Thienpont B; Zhang L; Postma AV; Breckpot J; Tranchevent LC; Van Loo P; Møllgård K; Tommerup N; Bache I; Tümer Z; van Engelen K; Menten B; Mortier G; Waggoner D; Gewillig M; Moreau Y; Devriendt K; Larsen LA Am J Hum Genet; 2010 Jun; 86(6):839-49. PubMed ID: 20493459 [TBL] [Abstract][Full Text] [Related]
11. TAB2 deletions and variants cause a highly recognisable syndrome with mitral valve disease, cardiomyopathy, short stature and hypermobility. Engwerda A; Leenders EKSM; Frentz B; Terhal PA; Löhner K; de Vries BBA; Dijkhuizen T; Vos YJ; Rinne T; van den Berg MP; Roofthooft MTR; Deelen P; van Ravenswaaij-Arts CMA; Kerstjens-Frederikse WS Eur J Hum Genet; 2021 Nov; 29(11):1669-1676. PubMed ID: 34456334 [TBL] [Abstract][Full Text] [Related]
12. TAB2 c.1398dup variant leads to haploinsufficiency and impairs extracellular matrix homeostasis. Morlino S; Carbone A; Ritelli M; Fusco C; Giambra V; Nardella G; Notarangelo A; Panelli P; Mazzoccoli G; Zoppi N; Grammatico P; Wade EM; Colombi M; Castori M; Micale L Hum Mutat; 2019 Oct; 40(10):1886-1898. PubMed ID: 31250519 [TBL] [Abstract][Full Text] [Related]
13. Familial TAB2 microdeletion and congenital heart defects including unusual valve dysplasia and tetralogy of fallot. Weiss K; Applegate C; Wang T; Batista DA Am J Med Genet A; 2015 Nov; 167A(11):2702-6. PubMed ID: 26139517 [TBL] [Abstract][Full Text] [Related]
14. RBCK1 negatively regulates tumor necrosis factor- and interleukin-1-triggered NF-kappaB activation by targeting TAB2/3 for degradation. Tian Y; Zhang Y; Zhong B; Wang YY; Diao FC; Wang RP; Zhang M; Chen DY; Zhai ZH; Shu HB J Biol Chem; 2007 Jun; 282(23):16776-82. PubMed ID: 17449468 [TBL] [Abstract][Full Text] [Related]
15. 6q25.1 (TAB2) microdeletion is a risk factor for hypoplastic left heart: a case report that expands the phenotype. Cheng A; Neufeld-Kaiser W; Byers PH; Liu YJ BMC Cardiovasc Disord; 2020 Mar; 20(1):137. PubMed ID: 32183715 [TBL] [Abstract][Full Text] [Related]
16. Protein molecular modeling techniques investigating novel TAB2 variant R347X causing cardiomyopathy and congenital heart defects in multigenerational family. Caulfield TR; Richter JE; Brown EE; Mohammad AN; Judge DP; Atwal PS Mol Genet Genomic Med; 2018 Apr; 6(4):666-72. PubMed ID: 29700987 [TBL] [Abstract][Full Text] [Related]
17. 6q25.1 (TAB2) microdeletion syndrome: Congenital heart defects and cardiomyopathy. Cheng A; Dinulos MBP; Neufeld-Kaiser W; Rosenfeld J; Kyriss M; Madan-Khetarpal S; Risheg H; Byers PH; Liu YJ Am J Med Genet A; 2017 Jul; 173(7):1848-1857. PubMed ID: 28464518 [TBL] [Abstract][Full Text] [Related]
18. Functional variants in SUMO4, TAB2, and NFkappaB and the risk of type 1 diabetes. Kosoy R; Concannon P Genes Immun; 2005 May; 6(3):231-5. PubMed ID: 15729364 [TBL] [Abstract][Full Text] [Related]
19. MiR-142a-3p alleviates Escherichia coli derived lipopolysaccharide-induced acute lung injury by targeting TAB2. Yang Y; Yang C; Guo YF; Liu P; Guo S; Yang J; Zahoor A; Shaukat A; Deng G Microb Pathog; 2019 Nov; 136():103721. PubMed ID: 31494298 [TBL] [Abstract][Full Text] [Related]
20. Transforming growth factor beta-activated kinase 1 (TAK1) kinase adaptor, TAK1-binding protein 2, plays dual roles in TAK1 signaling by recruiting both an activator and an inhibitor of TAK1 kinase in tumor necrosis factor signaling pathway. Broglie P; Matsumoto K; Akira S; Brautigan DL; Ninomiya-Tsuji J J Biol Chem; 2010 Jan; 285(4):2333-9. PubMed ID: 19955178 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]