These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 36230006)
1. Recent Insight on Edible Insect Protein: Extraction, Functional Properties, Allergenicity, Bioactivity, and Applications. Pan J; Xu H; Cheng Y; Mintah BK; Dabbour M; Yang F; Chen W; Zhang Z; Dai C; He R; Ma H Foods; 2022 Sep; 11(19):. PubMed ID: 36230006 [TBL] [Abstract][Full Text] [Related]
2. Alternative Protein Sources and Novel Foods: Benefits, Food Applications and Safety Issues. Quintieri L; Nitride C; De Angelis E; Lamonaca A; Pilolli R; Russo F; Monaci L Nutrients; 2023 Mar; 15(6):. PubMed ID: 36986239 [TBL] [Abstract][Full Text] [Related]
3. Comparison of Conventional and Sustainable Lipid Extraction Methods for the Production of Oil and Protein Isolate from Edible Insect Meal. Laroche M; Perreault V; Marciniak A; Gravel A; Chamberland J; Doyen A Foods; 2019 Nov; 8(11):. PubMed ID: 31766306 [TBL] [Abstract][Full Text] [Related]
4. Current state of insect proteins: extraction technologies, bioactive peptides and allergenicity of edible insect proteins. Ma Z; Mondor M; Goycoolea Valencia F; Hernández-Álvarez AJ Food Funct; 2023 Sep; 14(18):8129-8156. PubMed ID: 37656123 [TBL] [Abstract][Full Text] [Related]
5. Recovery and techno-functionality of flours and proteins from two edible insect species: Meal worm ( Bußler S; Rumpold BA; Jander E; Rawel HM; Schlüter OK Heliyon; 2016 Dec; 2(12):e00218. PubMed ID: 28054035 [TBL] [Abstract][Full Text] [Related]
6. Effect of Defatting and Extraction Solvent on the Antioxidant and Pancreatic Lipase Inhibitory Activities of Extracts from Navarro Del Hierro J; Cantero-Bahillo E; Fornari T; Martin D Insects; 2021 Sep; 12(9):. PubMed ID: 34564229 [TBL] [Abstract][Full Text] [Related]
7. Characterization, antioxidant activity, and inhibitory effect on pancreatic lipase of extracts from the edible insects Acheta domesticus and Tenebrio molitor. Navarro Del Hierro J; Gutiérrez-Docio A; Otero P; Reglero G; Martin D Food Chem; 2020 Mar; 309():125742. PubMed ID: 31704068 [TBL] [Abstract][Full Text] [Related]
8. Nitrogen-to-Protein Conversion Factors for Three Edible Insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. Janssen RH; Vincken JP; van den Broek LA; Fogliano V; Lakemond CM J Agric Food Chem; 2017 Mar; 65(11):2275-2278. PubMed ID: 28252948 [TBL] [Abstract][Full Text] [Related]
9. [Nutritional and biological value of Sadykova EO; Shumakova AA; Shestakova SI; Tyshko NV Vopr Pitan; 2021; 90(2):73-82. PubMed ID: 34019350 [TBL] [Abstract][Full Text] [Related]
10. Extracts from the edible insects Acheta domesticus and Tenebrio molitor with improved fatty acid profile due to ultrasound assisted or pressurized liquid extraction. Otero P; Gutierrez-Docio A; Navarro Del Hierro J; Reglero G; Martin D Food Chem; 2020 Jun; 314():126200. PubMed ID: 31972408 [TBL] [Abstract][Full Text] [Related]
11. Effects of Edible Insects on the Mycelium Formation of Wongsorn D; Surasilp T; Rattanasuk S Pak J Biol Sci; 2021 Jan; 24(8):881-887. PubMed ID: 34486355 [TBL] [Abstract][Full Text] [Related]
12. Bioactive Compounds and Antioxidant Composition of Nut Bars with Addition of Various Edible Insect Flours. Gumul D; Oracz J; Kowalski S; Mikulec A; Skotnicka M; Karwowska K; Areczuk A Molecules; 2023 Apr; 28(8):. PubMed ID: 37110790 [TBL] [Abstract][Full Text] [Related]
13. Edible insects as a source of biopeptides and their role in immunonutrition. Rivero-Pino F; Gonzalez-de la Rosa T; Montserrat-de la Paz S Food Funct; 2024 Mar; 15(6):2789-2798. PubMed ID: 38441670 [TBL] [Abstract][Full Text] [Related]
14. Authentication of Edible Insects' Powders by the Combination of DART-HRMS Signatures: The First Application of Ambient Mass Spectrometry to Screening of Novel Food. Tata A; Massaro A; Marzoli F; Miano B; Bragolusi M; Piro R; Belluco S Foods; 2022 Jul; 11(15):. PubMed ID: 35954032 [TBL] [Abstract][Full Text] [Related]
15. A Proteomic- and Bioinformatic-Based Identification of Specific Allergens from Edible Insects: Probes for Future Detection as Food Ingredients. Barre A; Pichereaux C; Simplicien M; Burlet-Schiltz O; Benoist H; Rougé P Foods; 2021 Jan; 10(2):. PubMed ID: 33573235 [TBL] [Abstract][Full Text] [Related]
16. Impact of the Addition of Lemke B; Siekmann L; Grabowski NT; Plötz M; Krischek C Insects; 2023 May; 14(5):. PubMed ID: 37233115 [TBL] [Abstract][Full Text] [Related]
17. Satiety of Edible Insect-Based Food Products as a Component of Body Weight Control. Skotnicka M; Mazurek A; Karwowska K; Folwarski M Nutrients; 2022 May; 14(10):. PubMed ID: 35631288 [TBL] [Abstract][Full Text] [Related]
18. Application of Edible Insects as Novel Protein Sources and Strategies for Improving Their Processing. Kim TK; Cha JY; Yong HI; Jang HW; Jung S; Choi YS Food Sci Anim Resour; 2022 May; 42(3):372-388. PubMed ID: 35611082 [TBL] [Abstract][Full Text] [Related]
19. Enzymatic hydrolysis of insect Alphitobius diaperinus towards the development of bioactive peptide hydrolysates. Sousa P; Borges S; Pintado M Food Funct; 2020 Apr; 11(4):3539-3548. PubMed ID: 32255460 [TBL] [Abstract][Full Text] [Related]
20. Effect of ethanol treatment on the structural, techno-functional, and antioxidant properties of edible insect protein obtained from Tenebrio molitor larvae. Hoon Lee J; Kim YJ; Kim TK; Song KM; Choi YS Food Chem; 2024 Mar; 437(Pt 1):137852. PubMed ID: 37922798 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]