These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 36230006)

  • 41. Fatty Acid and Amino Acid Profiles of Seven Edible Insects: Focus on Lipid Class Composition and Protein Conversion Factors.
    Perez-Santaescolastica C; de Pril I; van de Voorde I; Fraeye I
    Foods; 2023 Nov; 12(22):. PubMed ID: 38002148
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of endogenous phenoloxidase on protein solubility and digestibility after processing of Tenebrio molitor, Alphitobius diaperinus and Hermetia illucens.
    Janssen RH; Vincken JP; Arts NJG; Fogliano V; Lakemond CMM
    Food Res Int; 2019 Jul; 121():684-690. PubMed ID: 31108796
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Metagenetic analysis of the bacterial communities of edible insects from diverse production cycles at industrial rearing companies.
    Vandeweyer D; Crauwels S; Lievens B; Van Campenhout L
    Int J Food Microbiol; 2017 Nov; 261():11-18. PubMed ID: 28881263
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Edible insects: An alternative of nutritional, functional and bioactive compounds.
    Jantzen da Silva Lucas A; Menegon de Oliveira L; da Rocha M; Prentice C
    Food Chem; 2020 May; 311():126022. PubMed ID: 31869637
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Assessment of chemical composition and antioxidant properties of defatted flours obtained from several edible insects.
    Botella-Martínez C; Lucas-González R; Pérez-Álvarez JA; Fernández-López J; Viuda-Martos M
    Food Sci Technol Int; 2021 Jul; 27(5):383-391. PubMed ID: 32962449
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [The comprehensive studies of Hermetia illucens larvae protein's biological value].
    Tyshko NV; Zhminchenko VM; Nikitin NS; Trebukh MD; Shestakova SI; Pashorina VA; Sadykova EO
    Vopr Pitan; 2021; 90(5):49-58. PubMed ID: 34719142
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Effect of Substrate on the Nutrient Content and Fatty Acid Composition of Edible Insects.
    Riekkinen K; Väkeväinen K; Korhonen J
    Insects; 2022 Jun; 13(7):. PubMed ID: 35886766
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Novel foods: allergenicity assessment of insect proteins.
    Liguori B; Sancho AI; Poulsen M; Lindholm Bøgh K
    EFSA J; 2022 Dec; 20(Suppl 2):e200910. PubMed ID: 36531270
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of insect diets on the gastrointestinal tract health and growth performance of Siberian sturgeon (Acipenser baerii Brandt, 1869).
    Józefiak A; Nogales-Mérida S; Rawski M; Kierończyk B; Mazurkiewicz J
    BMC Vet Res; 2019 Oct; 15(1):348. PubMed ID: 31623627
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tenebrio molitor as a source of interesting natural compounds, their recovery processes, biological effects, and safety aspects.
    Errico S; Spagnoletta A; Verardi A; Moliterni S; Dimatteo S; Sangiorgio P
    Compr Rev Food Sci Food Saf; 2022 Jan; 21(1):148-197. PubMed ID: 34773434
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sonochemical action and reaction of edible insect protein: Influence on enzymolysis reaction-kinetics, free-Gibbs, structure, and antioxidant capacity.
    Mintah BK; He R; Dabbour M; Agyekum AA; Xing Z; Golly MK; Ma H
    J Food Biochem; 2019 Sep; 43(9):e12982. PubMed ID: 31489672
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Physicochemical and textural properties of emulsions prepared from the larvae of the edible insects
    Kim TK; Yong HI; Jung S; Sung JM; Jang HW; Choi YS
    J Anim Sci Technol; 2021 Mar; 63(2):417-425. PubMed ID: 33987615
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sustainable farming of the mealworm Tenebrio molitor for the production of food and feed.
    Grau T; Vilcinskas A; Joop G
    Z Naturforsch C J Biosci; 2017 Sep; 72(9-10):337-349. PubMed ID: 28525347
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dietary enrichment of edible insects with omega 3 fatty acids.
    Oonincx DGAB; Laurent S; Veenenbos ME; van Loon JJA
    Insect Sci; 2020 Jun; 27(3):500-509. PubMed ID: 30801963
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Extraction, characterization, and use of edible insect oil - A review.
    Cruz VA; Vicentini-Polette CM; Magalhaes DR; de Oliveira AL
    Food Chem; 2025 Jan; 463(Pt 2):141199. PubMed ID: 39307049
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Defatting and Sonication Enhances Protein Extraction from Edible Insects.
    Choi BD; Wong NAK; Auh JH
    Korean J Food Sci Anim Resour; 2017; 37(6):955-961. PubMed ID: 29725219
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microbiological Load of Edible Insects Found in Belgium.
    Caparros Megido R; Desmedt S; Blecker C; Béra F; Haubruge É; Alabi T; Francis F
    Insects; 2017 Jan; 8(1):. PubMed ID: 28098752
    [TBL] [Abstract][Full Text] [Related]  

  • 58. From feed to functionality: Unravelling the nutritional composition and techno-functional properties of insect-based ingredients.
    López-Gámez G; Del Pino-García R; López-Bascón MA; Verardo V
    Food Res Int; 2024 Feb; 178():113985. PubMed ID: 38309922
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nutritional Qualities and Enhancement of Edible Insects.
    van Huis A; Rumpold B; Maya C; Roos N
    Annu Rev Nutr; 2021 Oct; 41():551-576. PubMed ID: 34186013
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Limited cross reactivity among arginine kinase allergens from mealworm and cricket edible insects.
    Francis F; Doyen V; Debaugnies F; Mazzucchelli G; Caparros R; Alabi T; Blecker C; Haubruge E; Corazza F
    Food Chem; 2019 Mar; 276():714-718. PubMed ID: 30409653
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.