These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 36230171)

  • 1. Bacterial Attachment and Biofilm Formation on Antimicrobial Sealants and Stainless Steel Surfaces.
    Ciolacu L; Zand E; Negrau C; Jaeger H
    Foods; 2022 Oct; 11(19):. PubMed ID: 36230171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biofilm-Forming Ability of
    Zand E; Pfanner H; Domig KJ; Sinn G; Zunabovic-Pichler M; Jaeger H
    Foods; 2021 Mar; 10(3):. PubMed ID: 33805651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of modified stainless steel surfaces targeted to reduce biofilm formation by common milk sporeformers.
    Jindal S; Anand S; Huang K; Goddard J; Metzger L; Amamcharla J
    J Dairy Sci; 2016 Dec; 99(12):9502-9513. PubMed ID: 27692715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zirconium Nitride Coating Reduced Staphylococcus epidermidis Biofilm Formation on Orthopaedic Implant Surfaces: An In Vitro Study.
    Pilz M; Staats K; Tobudic S; Assadian O; Presterl E; Windhager R; Holinka J
    Clin Orthop Relat Res; 2019 Feb; 477(2):461-466. PubMed ID: 30418277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting adhesion and biofilm formation boundaries on stainless steel surfaces by five Salmonella enterica strains belonging to different serovars as a function of pH, temperature and NaCl concentration.
    Moraes JO; Cruz EA; Souza EGF; Oliveira TCM; Alvarenga VO; Peña WEL; Sant'Ana AS; Magnani M
    Int J Food Microbiol; 2018 Sep; 281():90-100. PubMed ID: 29843904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Food-Safe Modification of Stainless Steel Food-Processing Surfaces to Reduce Bacterial Biofilms.
    Awad TS; Asker D; Hatton BD
    ACS Appl Mater Interfaces; 2018 Jul; 10(27):22902-22912. PubMed ID: 29888590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study of biofilm formation by Shiga toxigenic Escherichia coli using epifluorescence microscopy on stainless steel and a microtitre plate method.
    Rivas L; Dykes GA; Fegan N
    J Microbiol Methods; 2007 Apr; 69(1):44-51. PubMed ID: 17239460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biofilm formation potential of Bacillus toyonensis and Pseudomonas aeruginosa on the stainless steel test surfaces in a model dairy batch system.
    Kütük D; Temiz A
    Folia Microbiol (Praha); 2022 Jun; 67(3):405-417. PubMed ID: 35031974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antimicrobial peptide AMPNT-6 from Bacillus subtilis inhibits biofilm formation by Shewanella putrefaciens and disrupts its preformed biofilms on both abiotic and shrimp shell surfaces.
    Deng Q; Pu Y; Sun L; Wang Y; Liu Y; Wang R; Liao J; Xu D; Liu Y; Ye R; Fang Z; Gooneratne R
    Food Res Int; 2017 Dec; 102():8-13. PubMed ID: 29196015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and characterization of anti-biofilm coatings applied by Non-Equilibrium Atmospheric Plasma on stainless steel.
    Fernández-Gómez P; Muro-Fraguas I; Múgica-Vidal R; Sainz-García A; Sainz-García E; González-Raurich M; Álvarez-Ordóñez A; Prieto M; López M; López M; Toledano P; Sáenz Y; González-Marcos A; Alba-Elías F
    Food Res Int; 2022 Feb; 152():109891. PubMed ID: 35181104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adhesion and removal kinetics of Bacillus cereus biofilms on Ni-PTFE modified stainless steel.
    Huang K; McLandsborough LA; Goddard JM
    Biofouling; 2016; 32(5):523-33. PubMed ID: 27020838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of stainless steel finish on Salmonella Typhimurium attachment, biofilm formation and sensitivity to chlorine.
    Schlisselberg DB; Yaron S
    Food Microbiol; 2013 Aug; 35(1):65-72. PubMed ID: 23628616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface finishes on stainless steel reduce bacterial attachment and early biofilm formation: scanning electron and atomic force microscopy study.
    Arnold JW; Bailey GW
    Poult Sci; 2000 Dec; 79(12):1839-45. PubMed ID: 11194050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbe repelling coated stainless steel analysed by field emission scanning electron microscopy and physicochemical methods.
    Raulio M; Järn M; Ahola J; Peltonen J; Rosenholm JB; Tervakangas S; Kolehmainen J; Ruokolainen T; Narko P; Salkinoja-Salonen M
    J Ind Microbiol Biotechnol; 2008 Jul; 35(7):751-60. PubMed ID: 18379832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antibacterial isoeugenol coating on stainless steel and polyethylene surfaces prevents biofilm growth.
    Nielsen CK; Subbiahdoss G; Zeng G; Salmi Z; Kjems J; Mygind T; Snabe T; Meyer RL
    J Appl Microbiol; 2018 Jan; 124(1):179-187. PubMed ID: 29119696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Antibiotic-loaded Point-of-care Implant Coating Inhibits Biofilm.
    Jennings JA; Carpenter DP; Troxel KS; Beenken KE; Smeltzer MS; Courtney HS; Haggard WO
    Clin Orthop Relat Res; 2015 Jul; 473(7):2270-82. PubMed ID: 25604874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anti-adhesion and Anti-biofilm Potential of Organosilane Nanoparticles against Foodborne Pathogens.
    Gkana EN; Doulgeraki AI; Chorianopoulos NG; Nychas GE
    Front Microbiol; 2017; 8():1295. PubMed ID: 28744277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reducing Staphylococcus aureus biofilm formation on stainless steel 316L using functionalized self-assembled monolayers.
    Kruszewski KM; Nistico L; Longwell MJ; Hynes MJ; Maurer JA; Hall-Stoodley L; Gawalt ES
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2059-69. PubMed ID: 23498233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence of extensive diversity in bacterial adherence mechanisms that exploit unanticipated stainless steel surface structural complexity for biofilm formation.
    Davis EM; Li D; Shahrooei M; Yu B; Muruve D; Irvin RT
    Acta Biomater; 2013 Apr; 9(4):6236-44. PubMed ID: 23212080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of poultry processing equipment surfaces for susceptibility to bacterial attachment and biofilm formation.
    Arnold JW; Silvers S
    Poult Sci; 2000 Aug; 79(8):1215-21. PubMed ID: 10947195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.