BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 36230930)

  • 1. NSP4 and ORF9b of SARS-CoV-2 Induce Pro-Inflammatory Mitochondrial DNA Release in Inner Membrane-Derived Vesicles.
    Faizan MI; Chaudhuri R; Sagar S; Albogami S; Chaudhary N; Azmi I; Akhtar A; Ali SM; Kumar R; Iqbal J; Joshi MC; Kharya G; Seth P; Roy SS; Ahmad T
    Cells; 2022 Sep; 11(19):. PubMed ID: 36230930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorylation of SARS-CoV-2 Orf9b Regulates Its Targeting to Two Binding Sites in TOM70 and Recruitment of Hsp90.
    Brandherm L; Kobaš AM; Klöhn M; Brüggemann Y; Pfaender S; Rassow J; Kreimendahl S
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Deubiquitinase USP29 Promotes SARS-CoV-2 Virulence by Preventing Proteasome Degradation of ORF9b.
    Gao W; Wang L; Ju X; Zhao S; Li Z; Su M; Xu J; Wang P; Ding Q; Lv G; Zhang W
    mBio; 2022 Jun; 13(3):e0130022. PubMed ID: 35638730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of SARS-CoV-2 Orf9b in complex with human TOM70 suggests unusual virus-host interactions.
    Gao X; Zhu K; Qin B; Olieric V; Wang M; Cui S
    Nat Commun; 2021 May; 12(1):2843. PubMed ID: 33990585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Orf9b protein of SARS-CoV-2 modulates mitochondrial protein biogenesis.
    Lenhard S; Gerlich S; Khan A; Rödl S; Bökenkamp JE; Peker E; Zarges C; Faust J; Storchova Z; Räschle M; Riemer J; Herrmann JM
    J Cell Biol; 2023 Oct; 222(10):. PubMed ID: 37682539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial DNA and TLR9 activation contribute to SARS-CoV-2-induced endothelial cell damage.
    Costa TJ; Potje SR; Fraga-Silva TFC; da Silva-Neto JA; Barros PR; Rodrigues D; Machado MR; Martins RB; Santos-Eichler RA; Benatti MN; de Sá KSG; Almado CEL; Castro ÍA; Pontelli MC; Serra L; Carneiro FS; Becari C; Louzada-Junior P; Oliveira RDR; Zamboni DS; Arruda E; Auxiliadora-Martins M; Giachini FRC; Bonato VLD; Zachara NE; Bomfim GF; Tostes RC
    Vascul Pharmacol; 2022 Feb; 142():106946. PubMed ID: 34838735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SARS-CoV-2 ORF9b inhibits RIG-I-MAVS antiviral signaling by interrupting K63-linked ubiquitination of NEMO.
    Wu J; Shi Y; Pan X; Wu S; Hou R; Zhang Y; Zhong T; Tang H; Du W; Wang L; Wo J; Mu J; Qiu Y; Yang K; Zhang LK; Ye BC; Qi N
    Cell Rep; 2021 Feb; 34(7):108761. PubMed ID: 33567255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of SARS-CoV-2 protein ORF9b to mitochondrial translocase TOM70 prevents its interaction with chaperone HSP90.
    Ayinde KS; Pinheiro GMS; Ramos CHI
    Biochimie; 2022 Sep; 200():99-106. PubMed ID: 35643212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Obesity impairs cardiolipin-dependent mitophagy and therapeutic intercellular mitochondrial transfer ability of mesenchymal stem cells.
    Sagar S; Faizan MI; Chaudhary N; Singh V; Singh P; Gheware A; Sharma K; Azmi I; Singh VP; Kharya G; Mabalirajan U; Agrawal A; Ahmad T; Sinha Roy S
    Cell Death Dis; 2023 May; 14(5):324. PubMed ID: 37173333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SARS-CoV-2 ORF9b antagonizes type I and III interferons by targeting multiple components of the RIG-I/MDA-5-MAVS, TLR3-TRIF, and cGAS-STING signaling pathways.
    Han L; Zhuang MW; Deng J; Zheng Y; Zhang J; Nan ML; Zhang XJ; Gao C; Wang PH
    J Med Virol; 2021 Sep; 93(9):5376-5389. PubMed ID: 33913550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression and Cleavage of Middle East Respiratory Syndrome Coronavirus nsp3-4 Polyprotein Induce the Formation of Double-Membrane Vesicles That Mimic Those Associated with Coronaviral RNA Replication.
    Oudshoorn D; Rijs K; Limpens RWAL; Groen K; Koster AJ; Snijder EJ; Kikkert M; Bárcena M
    mBio; 2017 Nov; 8(6):. PubMed ID: 29162711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of mitochondrial DNA in dynamics of the immune response to COVID-19.
    Mahmoodpoor A; Sanaie S; Ostadi Z; Eskandari M; Behrouzi N; Asghari R; Zahirnia A; Sohrabifar N; Kazeminasab S
    Gene; 2022 Aug; 836():146681. PubMed ID: 35728769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of enhanced innate immune evasion by SARS-CoV-2.
    Thorne LG; Bouhaddou M; Reuschl AK; Zuliani-Alvarez L; Polacco B; Pelin A; Batra J; Whelan MVX; Hosmillo M; Fossati A; Ragazzini R; Jungreis I; Ummadi M; Rojc A; Turner J; Bischof ML; Obernier K; Braberg H; Soucheray M; Richards A; Chen KH; Harjai B; Memon D; Hiatt J; Rosales R; McGovern BL; Jahun A; Fabius JM; White K; Goodfellow IG; Takeuchi Y; Bonfanti P; Shokat K; Jura N; Verba K; Noursadeghi M; Beltrao P; Kellis M; Swaney DL; García-Sastre A; Jolly C; Towers GJ; Krogan NJ
    Nature; 2022 Feb; 602(7897):487-495. PubMed ID: 34942634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SARS-CoV-2 Nonstructural Protein 1 Inhibits the Interferon Response by Causing Depletion of Key Host Signaling Factors.
    Kumar A; Ishida R; Strilets T; Cole J; Lopez-Orozco J; Fayad N; Felix-Lopez A; Elaish M; Evseev D; Magor KE; Mahal LK; Nagata LP; Evans DH; Hobman TC
    J Virol; 2021 Jun; 95(13):e0026621. PubMed ID: 34110264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms.
    Gordon DE; Hiatt J; Bouhaddou M; Rezelj VV; Ulferts S; Braberg H; Jureka AS; Obernier K; Guo JZ; Batra J; Kaake RM; Weckstein AR; Owens TW; Gupta M; Pourmal S; Titus EW; Cakir M; Soucheray M; McGregor M; Cakir Z; Jang G; O'Meara MJ; Tummino TA; Zhang Z; Foussard H; Rojc A; Zhou Y; Kuchenov D; Hüttenhain R; Xu J; Eckhardt M; Swaney DL; Fabius JM; Ummadi M; Tutuncuoglu B; Rathore U; Modak M; Haas P; Haas KM; Naing ZZC; Pulido EH; Shi Y; Barrio-Hernandez I; Memon D; Petsalaki E; Dunham A; Marrero MC; Burke D; Koh C; Vallet T; Silvas JA; Azumaya CM; Billesbølle C; Brilot AF; Campbell MG; Diallo A; Dickinson MS; Diwanji D; Herrera N; Hoppe N; Kratochvil HT; Liu Y; Merz GE; Moritz M; Nguyen HC; Nowotny C; Puchades C; Rizo AN; Schulze-Gahmen U; Smith AM; Sun M; Young ID; Zhao J; Asarnow D; Biel J; Bowen A; Braxton JR; Chen J; Chio CM; Chio US; Deshpande I; Doan L; Faust B; Flores S; Jin M; Kim K; Lam VL; Li F; Li J; Li YL; Li Y; Liu X; Lo M; Lopez KE; Melo AA; Moss FR; Nguyen P; Paulino J; Pawar KI; Peters JK; Pospiech TH; Safari M; Sangwan S; Schaefer K; Thomas PV; Thwin AC; Trenker R; Tse E; Tsui TKM; Wang F; Whitis N; Yu Z; Zhang K; Zhang Y; Zhou F; Saltzberg D; ; Hodder AJ; Shun-Shion AS; Williams DM; White KM; Rosales R; Kehrer T; Miorin L; Moreno E; Patel AH; Rihn S; Khalid MM; Vallejo-Gracia A; Fozouni P; Simoneau CR; Roth TL; Wu D; Karim MA; Ghoussaini M; Dunham I; Berardi F; Weigang S; Chazal M; Park J; Logue J; McGrath M; Weston S; Haupt R; Hastie CJ; Elliott M; Brown F; Burness KA; Reid E; Dorward M; Johnson C; Wilkinson SG; Geyer A; Giesel DM; Baillie C; Raggett S; Leech H; Toth R; Goodman N; Keough KC; Lind AL; ; Klesh RJ; Hemphill KR; Carlson-Stevermer J; Oki J; Holden K; Maures T; Pollard KS; Sali A; Agard DA; Cheng Y; Fraser JS; Frost A; Jura N; Kortemme T; Manglik A; Southworth DR; Stroud RM; Alessi DR; Davies P; Frieman MB; Ideker T; Abate C; Jouvenet N; Kochs G; Shoichet B; Ott M; Palmarini M; Shokat KM; García-Sastre A; Rassen JA; Grosse R; Rosenberg OS; Verba KA; Basler CF; Vignuzzi M; Peden AA; Beltrao P; Krogan NJ
    Science; 2020 Dec; 370(6521):. PubMed ID: 33060197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predictable fold switching by the SARS-CoV-2 protein ORF9b.
    Porter LL
    Protein Sci; 2021 Aug; 30(8):1723-1729. PubMed ID: 33934422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Minimalist Model Systems Reveal Similarities and Differences between Membrane Interaction Modes of MCL1 and BAK.
    Landeta O; Landajuela A; Garcia-Saez A; Basañez G
    J Biol Chem; 2015 Jul; 290(27):17004-19. PubMed ID: 25987560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Cullin 5-based complex serves as an essential modulator of ORF9b stability in SARS-CoV-2 replication.
    Zhou Y; Chen Z; Liu S; Liu S; Liao Y; Du A; Dong Z; Zhang Y; Chen X; Tao S; Wu X; Razzaq A; Xu G; Tan DA; Li S; Deng Y; Peng J; Dai S; Deng X; Zhang X; Jiang T; Zhang Z; Cheng G; Zhao J; Xia Z
    Signal Transduct Target Ther; 2024 Jun; 9(1):159. PubMed ID: 38937432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of NSP6 in the biogenesis of the SARS-CoV-2 replication organelle.
    Ricciardi S; Guarino AM; Giaquinto L; Polishchuk EV; Santoro M; Di Tullio G; Wilson C; Panariello F; Soares VC; Dias SSG; Santos JC; Souza TML; Fusco G; Viscardi M; Brandi S; Bozza PT; Polishchuk RS; Venditti R; De Matteis MA
    Nature; 2022 Jun; 606(7915):761-768. PubMed ID: 35551511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct Activation of Endothelial Cells by SARS-CoV-2 Nucleocapsid Protein Is Blocked by Simvastatin.
    Qian Y; Lei T; Patel PS; Lee CH; Monaghan-Nichols P; Xin HB; Qiu J; Fu M
    J Virol; 2021 Nov; 95(23):e0139621. PubMed ID: 34549987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.