These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 36231583)
1. Predictive Model for Human Activity Recognition Based on Machine Learning and Feature Selection Techniques. Patiño-Saucedo JA; Ariza-Colpas PP; Butt-Aziz S; Piñeres-Melo MA; López-Ruiz JL; Morales-Ortega RC; De-la-Hoz-Franco E Int J Environ Res Public Health; 2022 Sep; 19(19):. PubMed ID: 36231583 [TBL] [Abstract][Full Text] [Related]
2. Human Activity Recognition Data Analysis: History, Evolutions, and New Trends. Ariza-Colpas PP; Vicario E; Oviedo-Carrascal AI; Butt Aziz S; Piñeres-Melo MA; Quintero-Linero A; Patara F Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591091 [TBL] [Abstract][Full Text] [Related]
3. Machine Learning Applied to Datasets of Human Activity Recognition: Data Analysis in Health Care. Patricia AP; Enrico V; Shariq BA; De la Hoz Franco E; Alberto PM; Isabel OA; Tariq MI; Restrepo JKG; Fulvio P Curr Med Imaging; 2022; 19(1):46-64. PubMed ID: 34983351 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of Three State-of-the-Art Classifiers for Recognition of Activities of Daily Living from Smart Home Ambient Data. Nef T; Urwyler P; Büchler M; Tarnanas I; Stucki R; Cazzoli D; Müri R; Mosimann U Sensors (Basel); 2015 May; 15(5):11725-40. PubMed ID: 26007727 [TBL] [Abstract][Full Text] [Related]
5. Human Activity Recognition Using Attention-Mechanism-Based Deep Learning Feature Combination. Akter M; Ansary S; Khan MA; Kim D Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420881 [TBL] [Abstract][Full Text] [Related]
6. Comparison of machine learning techniques for the identification of human activities from inertial sensors available in a mobile device after the application of data imputation techniques. Pires IM; Hussain F; Marques G; Garcia NM Comput Biol Med; 2021 Aug; 135():104638. PubMed ID: 34256257 [TBL] [Abstract][Full Text] [Related]
7. Comparative performance of machine learning models for the classification of human gait. Thakur D; Lalwani P Biomed Phys Eng Express; 2024 Jan; 10(2):. PubMed ID: 38128132 [TBL] [Abstract][Full Text] [Related]
8. A Human Activity Recognition System Using Skeleton Data from RGBD Sensors. Cippitelli E; Gasparrini S; Gambi E; Spinsante S Comput Intell Neurosci; 2016; 2016():4351435. PubMed ID: 27069469 [TBL] [Abstract][Full Text] [Related]
9. Human Action Recognition in Smart Living Services and Applications: Context Awareness, Data Availability, Personalization, and Privacy. Diraco G; Rescio G; Caroppo A; Manni A; Leone A Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447889 [TBL] [Abstract][Full Text] [Related]
11. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477 [TBL] [Abstract][Full Text] [Related]
12. Improved Spatiotemporal Framework for Human Activity Recognition in Smart Environment. Salem Z; Weiss AP Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616729 [TBL] [Abstract][Full Text] [Related]
13. Using a Hybrid Neural Network and a Regularized Extreme Learning Machine for Human Activity Recognition with Smartphone and Smartwatch. Tan TH; Shih JY; Liu SH; Alkhaleefah M; Chang YL; Gochoo M Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36992065 [TBL] [Abstract][Full Text] [Related]
14. Lifelong Adaptive Machine Learning for Sensor-Based Human Activity Recognition Using Prototypical Networks. Adaimi R; Thomaz E Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146230 [TBL] [Abstract][Full Text] [Related]
15. Unsupervised Human Activity Recognition Using the Clustering Approach: A Review. Ariza Colpas P; Vicario E; De-La-Hoz-Franco E; Pineres-Melo M; Oviedo-Carrascal A; Patara F Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32397446 [TBL] [Abstract][Full Text] [Related]
16. Enhanced Human Activity Recognition Based on Smartphone Sensor Data Using Hybrid Feature Selection Model. Ahmed N; Rafiq JI; Islam MR Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31935943 [TBL] [Abstract][Full Text] [Related]
17. Comparison of Feature Learning Methods for Human Activity Recognition Using Wearable Sensors. Li F; Shirahama K; Nisar MA; Köping L; Grzegorzek M Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29495310 [TBL] [Abstract][Full Text] [Related]
18. Human Activity Recognition Supported on Indoor Localization: A Systematic Review. Cerón J; López DM Stud Health Technol Inform; 2018; 249():93-101. PubMed ID: 29866962 [TBL] [Abstract][Full Text] [Related]
19. How Validation Methodology Influences Human Activity Recognition Mobile Systems. Bragança H; Colonna JG; Oliveira HABF; Souto E Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336529 [TBL] [Abstract][Full Text] [Related]
20. Wearable Sensor-Based Human Activity Recognition in the Smart Healthcare System. Serpush F; Menhaj MB; Masoumi B; Karasfi B Comput Intell Neurosci; 2022; 2022():1391906. PubMed ID: 35251142 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]