These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 36231678)
1. Early Prediction of Diabetes Using an Ensemble of Machine Learning Models. Dutta A; Hasan MK; Ahmad M; Awal MA; Islam MA; Masud M; Meshref H Int J Environ Res Public Health; 2022 Sep; 19(19):. PubMed ID: 36231678 [TBL] [Abstract][Full Text] [Related]
2. Prediction of diabetes disease using an ensemble of machine learning multi-classifier models. Abnoosian K; Farnoosh R; Behzadi MH BMC Bioinformatics; 2023 Sep; 24(1):337. PubMed ID: 37697283 [TBL] [Abstract][Full Text] [Related]
3. Diabetes mellitus prediction and diagnosis from a data preprocessing and machine learning perspective. Olisah CC; Smith L; Smith M Comput Methods Programs Biomed; 2022 Jun; 220():106773. PubMed ID: 35429810 [TBL] [Abstract][Full Text] [Related]
4. Deep Learning and Machine Learning with Grid Search to Predict Later Occurrence of Breast Cancer Metastasis Using Clinical Data. Jiang X; Xu C J Clin Med; 2022 Sep; 11(19):. PubMed ID: 36233640 [TBL] [Abstract][Full Text] [Related]
5. Accurate Diabetes Risk Stratification Using Machine Learning: Role of Missing Value and Outliers. Maniruzzaman M; Rahman MJ; Al-MehediHasan M; Suri HS; Abedin MM; El-Baz A; Suri JS J Med Syst; 2018 Apr; 42(5):92. PubMed ID: 29637403 [TBL] [Abstract][Full Text] [Related]
7. Performance analysis and prediction of type 2 diabetes mellitus based on lifestyle data using machine learning approaches. Ganie SM; Malik MB; Arif T J Diabetes Metab Disord; 2022 Jun; 21(1):339-352. PubMed ID: 35673418 [TBL] [Abstract][Full Text] [Related]
8. A new hybrid ensemble machine-learning model for severity risk assessment and post-COVID prediction system. Shakhovska N; Yakovyna V; Chopyak V Math Biosci Eng; 2022 Apr; 19(6):6102-6123. PubMed ID: 35603393 [TBL] [Abstract][Full Text] [Related]
9. Machine learning models for prediction of double and triple burdens of non-communicable diseases in Bangladesh. Al-Zubayer MA; Alam K; Shanto HH; Maniruzzaman M; Majumder UK; Ahammed B J Biosoc Sci; 2024 May; 56(3):426-444. PubMed ID: 38505939 [TBL] [Abstract][Full Text] [Related]
10. Nested genetic algorithm-based classifier selection and placement in multi-level ensemble framework for effective disease diagnosis. Arukonda S; Cheruku R Comput Methods Biomech Biomed Engin; 2023 Dec; ():1-24. PubMed ID: 38126276 [TBL] [Abstract][Full Text] [Related]
11. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers. Deist TM; Dankers FJWM; Valdes G; Wijsman R; Hsu IC; Oberije C; Lustberg T; van Soest J; Hoebers F; Jochems A; El Naqa I; Wee L; Morin O; Raleigh DR; Bots W; Kaanders JH; Belderbos J; Kwint M; Solberg T; Monshouwer R; Bussink J; Dekker A; Lambin P Med Phys; 2018 Jul; 45(7):3449-3459. PubMed ID: 29763967 [TBL] [Abstract][Full Text] [Related]
12. The 30-days hospital readmission risk in diabetic patients: predictive modeling with machine learning classifiers. Shang Y; Jiang K; Wang L; Zhang Z; Zhou S; Liu Y; Dong J; Wu H BMC Med Inform Decis Mak; 2021 Jul; 21(Suppl 2):57. PubMed ID: 34330267 [TBL] [Abstract][Full Text] [Related]
13. Machine Learning-Based Boosted Regression Ensemble Combined with Hyperparameter Tuning for Optimal Adaptive Learning. Isabona J; Imoize AL; Kim Y Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632184 [TBL] [Abstract][Full Text] [Related]
14. An Ensemble Approach for the Prediction of Diabetes Mellitus Using a Soft Voting Classifier with an Explainable AI. Kibria HB; Nahiduzzaman M; Goni MOF; Ahsan M; Haider J Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236367 [TBL] [Abstract][Full Text] [Related]
15. Performance Analysis of Conventional Machine Learning Algorithms for Identification of Chronic Kidney Disease in Type 1 Diabetes Mellitus Patients. Chowdhury NH; Reaz MBI; Haque F; Ahmad S; Ali SHM; A Bakar AA; Bhuiyan MAS Diagnostics (Basel); 2021 Dec; 11(12):. PubMed ID: 34943504 [TBL] [Abstract][Full Text] [Related]
16. Machine learning approach for predicting cardiovascular disease in Bangladesh: evidence from a cross-sectional study in 2023. Hossain S; Hasan MK; Faruk MO; Aktar N; Hossain R; Hossain K BMC Cardiovasc Disord; 2024 Apr; 24(1):214. PubMed ID: 38632519 [TBL] [Abstract][Full Text] [Related]
17. Breast cancer prediction with transcriptome profiling using feature selection and machine learning methods. Taghizadeh E; Heydarheydari S; Saberi A; JafarpoorNesheli S; Rezaeijo SM BMC Bioinformatics; 2022 Oct; 23(1):410. PubMed ID: 36183055 [TBL] [Abstract][Full Text] [Related]
18. A data-driven approach to predicting diabetes and cardiovascular disease with machine learning. Dinh A; Miertschin S; Young A; Mohanty SD BMC Med Inform Decis Mak; 2019 Nov; 19(1):211. PubMed ID: 31694707 [TBL] [Abstract][Full Text] [Related]
19. Machine Learning-Based Ensemble Classifiers for Anomaly Handling in Smart Home Energy Consumption Data. Kasaraneni PP; Venkata Pavan Kumar Y; Moganti GLK; Kannan R Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36502025 [TBL] [Abstract][Full Text] [Related]
20. Diabetic Retinopathy Prediction by Ensemble Learning Based on Biochemical and Physical Data. Shen Z; Wu Q; Wang Z; Chen G; Lin B Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34070287 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]