These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Comparative evaluation of mathematical functions to describe growth and efficiency of phosphorus utilization in growing pigs. Kebreab E; Schulin-Zeuthen M; Lopez S; Soler J; Dias RS; de Lange CF; France J J Anim Sci; 2007 Oct; 85(10):2498-507. PubMed ID: 17565069 [TBL] [Abstract][Full Text] [Related]
3. Comparison of logistic equations for population growth. Jensen AL Biometrics; 1975 Dec; 31(4):853-62. PubMed ID: 1203427 [TBL] [Abstract][Full Text] [Related]
4. Density-dependence as a size-independent regulatory mechanism. de Vladar HP J Theor Biol; 2006 Jan; 238(2):245-56. PubMed ID: 15990117 [TBL] [Abstract][Full Text] [Related]
5. Spatial structure, environmental heterogeneity, and population dynamics: analysis of the coupled logistic map. Kendall BE; Fox GA Theor Popul Biol; 1998 Aug; 54(1):11-37. PubMed ID: 9680486 [TBL] [Abstract][Full Text] [Related]
7. [A contribution to the generalization of the Gompertz function]. Wenk G Gegenbaurs Morphol Jahrb; 1979; 125(5):611-7. PubMed ID: 550995 [TBL] [Abstract][Full Text] [Related]
8. Reducing bias in estimates of the richards growth function shape parameter. McCallum DA; Dixon PM Growth Dev Aging; 1990; 54(4):135-41. PubMed ID: 2092013 [TBL] [Abstract][Full Text] [Related]
9. [Logistic law of growth and its implications]. Peil J Gegenbaurs Morphol Jahrb; 1978; 124(4):524-45. PubMed ID: 744459 [TBL] [Abstract][Full Text] [Related]
10. Modeling growth kinetics and statistical distribution of oligometastases. Withers HR; Lee SP Semin Radiat Oncol; 2006 Apr; 16(2):111-9. PubMed ID: 16564446 [TBL] [Abstract][Full Text] [Related]
11. Uncertainties regarding dengue modeling in Rio de Janeiro, Brazil. Luz PM; Codeço CT; Massad E; Struchiner CJ Mem Inst Oswaldo Cruz; 2003 Oct; 98(7):871-8. PubMed ID: 14765541 [TBL] [Abstract][Full Text] [Related]
12. Integrating individual movement behaviour into dispersal functions. Heinz SK; Wissel C; Conradt L; Frank K J Theor Biol; 2007 Apr; 245(4):601-9. PubMed ID: 17240403 [TBL] [Abstract][Full Text] [Related]
13. Bone growth in ducks through mathematical models with special reference to the Janoschek growth curve. Gille U; Salomon FV Growth Dev Aging; 1995; 59(4):207-14. PubMed ID: 8770612 [TBL] [Abstract][Full Text] [Related]
14. Modelling the ontogeny of ectotherms exhibiting indeterminate growth. Dumas A; France J J Theor Biol; 2008 Sep; 254(1):76-81. PubMed ID: 18579158 [TBL] [Abstract][Full Text] [Related]
15. Stochastic von Bertalanffy models, with applications to fish recruitment. Lv Q; Pitchford JW J Theor Biol; 2007 Feb; 244(4):640-55. PubMed ID: 17055532 [TBL] [Abstract][Full Text] [Related]
16. Age structure, growth, attrition and accession: A new synthesis. Preston SH; Coale AJ Popul Index; 1982; 48(2):217-59. PubMed ID: 12265035 [TBL] [Abstract][Full Text] [Related]
17. [Allometry and the original and generalized Gompertz function (author's transl)]. Sager G Anat Anz; 1980; 147(4):389-405. PubMed ID: 7406219 [TBL] [Abstract][Full Text] [Related]
18. [Demonstration of biological processes in model space or: in search of new natural constants]. Fischer G Gegenbaurs Morphol Jahrb; 1985; 131(5):569-87. PubMed ID: 4065511 [TBL] [Abstract][Full Text] [Related]