These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
334 related articles for article (PubMed ID: 36232323)
21. Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida. Nouri E; Breuillin-Sessoms F; Feller U; Reinhardt D PLoS One; 2014; 9(6):e90841. PubMed ID: 24608923 [TBL] [Abstract][Full Text] [Related]
22. Plant species differ in early seedling growth and tissue nutrient responses to arbuscular and ectomycorrhizal fungi. Holste EK; Kobe RK; Gehring CA Mycorrhiza; 2017 Apr; 27(3):211-223. PubMed ID: 27838856 [TBL] [Abstract][Full Text] [Related]
23. Isotope Labeling to Study Phosphorus Uptake in the Arbuscular Mycorrhizal Symbiosis. Cruz-Paredes C; Gavito ME Methods Mol Biol; 2020; 2146():213-222. PubMed ID: 32415606 [TBL] [Abstract][Full Text] [Related]
24. Effects of two contrasted arbuscular mycorrhizal fungal isolates on nutrient uptake by Sorghum bicolor under drought. Symanczik S; Lehmann MF; Wiemken A; Boller T; Courty PE Mycorrhiza; 2018 Nov; 28(8):779-785. PubMed ID: 30006910 [TBL] [Abstract][Full Text] [Related]
25. Arbuscular mycorrhizal symbiosis with Rhizophagus irregularis DAOM197198 modifies the root transcriptome of walnut trees. Durney C; Boussageon R; El-Mjiyad N; Wipf D; Courty PE Mycorrhiza; 2024 Jul; 34(4):341-350. PubMed ID: 38801470 [TBL] [Abstract][Full Text] [Related]
26. Interactions between plants and arbuscular mycorrhizal fungi. Hata S; Kobae Y; Banba M Int Rev Cell Mol Biol; 2010; 281():1-48. PubMed ID: 20460182 [TBL] [Abstract][Full Text] [Related]
27. Maize zinc uptake is influenced by arbuscular mycorrhizal symbiosis under various soil phosphorus availabilities. Yu B; Zhou C; Wang Z; Bucher M; Schaaf G; Sawers RJH; Chen X; Hochholdinger F; Zou C; Yu P New Phytol; 2024 Sep; 243(5):1936-1950. PubMed ID: 38973063 [TBL] [Abstract][Full Text] [Related]
28. An invasive plant experiences greater benefits of root morphology from enhancing nutrient competition associated with arbuscular mycorrhizae in karst soil than a native plant. Xia T; Wang Y; He Y; Wu C; Shen K; Tan Q; Kang L; Guo Y; Wu B; Han X PLoS One; 2020; 15(6):e0234410. PubMed ID: 32516341 [TBL] [Abstract][Full Text] [Related]
29. [Metabolism and interaction of C and N in the arbuscular mycorrhizal symbiosis]. Li YJ; Liu ZL; He XY; Tian CJ Ying Yong Sheng Tai Xue Bao; 2014 Mar; 25(3):903-10. PubMed ID: 24984513 [TBL] [Abstract][Full Text] [Related]
30. Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Johnson NC; Wilson GW; Bowker MA; Wilson JA; Miller RM Proc Natl Acad Sci U S A; 2010 Feb; 107(5):2093-8. PubMed ID: 20133855 [TBL] [Abstract][Full Text] [Related]
31. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Smith SE; Smith FA Annu Rev Plant Biol; 2011; 62():227-50. PubMed ID: 21391813 [TBL] [Abstract][Full Text] [Related]
32. [Biological Effects of ZnO Nanoparticles as Influenced by Arbuscular Mycorrhizal Inoculation and Phosphorus Fertilization]. Jing XX; Su ZZ; Xing HE; Wang FY; Shi ZY; Liu XQ Huan Jing Ke Xue; 2016 Aug; 37(8):3208-3215. PubMed ID: 29964752 [TBL] [Abstract][Full Text] [Related]
33. The role of carbon in fungal nutrient uptake and transport: implications for resource exchange in the arbuscular mycorrhizal symbiosis. Fellbaum CR; Mensah JA; Pfeffer PE; Kiers ET; Bücking H Plant Signal Behav; 2012 Nov; 7(11):1509-12. PubMed ID: 22990447 [TBL] [Abstract][Full Text] [Related]
34. Signaling in the arbuscular mycorrhizal symbiosis. Harrison MJ Annu Rev Microbiol; 2005; 59():19-42. PubMed ID: 16153162 [TBL] [Abstract][Full Text] [Related]
35. Making partners in the city: impact of urban soil P enrichment on the partnership between an invasive herb and arbuscular mycorrhizal fungi in a tropical city. Méndez DS; Ramos-Zapata J; Estrada-Medina H; Carmona D Plant Biol (Stuttg); 2024 Jan; 26(1):51-62. PubMed ID: 37937739 [TBL] [Abstract][Full Text] [Related]
36. Influence of nutrient signals and carbon allocation on the expression of phosphate and nitrogen transporter genes in winter wheat (Triticum aestivum L.) roots colonized by arbuscular mycorrhizal fungi. Tian H; Yuan X; Duan J; Li W; Zhai B; Gao Y PLoS One; 2017; 12(2):e0172154. PubMed ID: 28207830 [TBL] [Abstract][Full Text] [Related]
37. Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Wang X; Pan Q; Chen F; Yan X; Liao H Mycorrhiza; 2011 Apr; 21(3):173-81. PubMed ID: 20544230 [TBL] [Abstract][Full Text] [Related]
38. A beneficial role of arbuscular mycorrhizal fungi in influencing the effects of silver nanoparticles on plant-microbe systems in a soil matrix. Cao J; Feng Y; Lin X; Wang J Environ Sci Pollut Res Int; 2020 Apr; 27(11):11782-11796. PubMed ID: 31975001 [TBL] [Abstract][Full Text] [Related]
39. A tripartite bacterial-fungal-plant symbiosis in the mycorrhiza-shaped microbiome drives plant growth and mycorrhization. Zhang C; van der Heijden MGA; Dodds BK; Nguyen TB; Spooren J; Valzano-Held A; Cosme M; Berendsen RL Microbiome; 2024 Jan; 12(1):13. PubMed ID: 38243337 [TBL] [Abstract][Full Text] [Related]
40. Herbivore-driven disruption of arbuscular mycorrhizal carbon-for-nutrient exchange is ameliorated by neighboring plants. Durant E; Hoysted GA; Howard N; Sait SM; Childs DZ; Johnson D; Field KJ Curr Biol; 2023 Jun; 33(12):2566-2573.e4. PubMed ID: 37290441 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]