These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 36232325)

  • 1. DLm6Am: A Deep-Learning-Based Tool for Identifying N6,2'-O-Dimethyladenosine Sites in RNA Sequences.
    Luo Z; Su W; Lou L; Qiu W; Xiao X; Xu Z
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EMDL_m6Am: identifying N6,2'-O-dimethyladenosine sites based on stacking ensemble deep learning.
    Jia J; Wei Z; Sun M
    BMC Bioinformatics; 2023 Oct; 24(1):397. PubMed ID: 37880673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. m6AmPred: Identifying RNA N6, 2'-O-dimethyladenosine (m
    Jiang J; Song B; Chen K; Lu Z; Rong R; Zhong Y; Meng J
    Methods; 2022 Jul; 203():328-334. PubMed ID: 33540081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. im5C-DSCGA: A Proposed Hybrid Framework Based on Improved DenseNet and Attention Mechanisms for Identifying 5-methylcytosine Sites in Human RNA.
    Jia J; Qin L; Lei R
    Front Biosci (Landmark Ed); 2023 Dec; 28(12):346. PubMed ID: 38179749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EMDLP: Ensemble multiscale deep learning model for RNA methylation site prediction.
    Wang H; Liu H; Huang T; Li G; Zhang L; Sun Y
    BMC Bioinformatics; 2022 Jun; 23(1):221. PubMed ID: 35676633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive review and assessment of computational methods for predicting RNA post-transcriptional modification sites from RNA sequences.
    Chen Z; Zhao P; Li F; Wang Y; Smith AI; Webb GI; Akutsu T; Baggag A; Bensmail H; Song J
    Brief Bioinform; 2020 Sep; 21(5):1676-1696. PubMed ID: 31714956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. m6Aminer: Predicting the m6Am Sites on mRNA by Fusing Multiple Sequence-Derived Features into a CatBoost-Based Classifier.
    Liu Z; Lan P; Liu T; Liu X; Liu T
    Int J Mol Sci; 2023 Apr; 24(9):. PubMed ID: 37175594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting N6-Methyladenosine Sites in Multiple Tissues of Mammals through Ensemble Deep Learning.
    Luo Z; Lou L; Qiu W; Xu Z; Xiao X
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DLC-ac4C: A Prediction Model for N4-acetylcytidine Sites in Human mRNA Based on DenseNet and Bidirectional LSTM Methods.
    Jia J; Cao X; Wei Z
    Curr Genomics; 2023 Nov; 24(3):171-186. PubMed ID: 38178985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MTTLm
    Wang H; Zeng W; Huang X; Liu Z; Sun Y; Zhang L
    Math Biosci Eng; 2024 Jan; 21(1):272-299. PubMed ID: 38303423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EDLm
    Zhang L; Li G; Li X; Wang H; Chen S; Liu H
    BMC Bioinformatics; 2021 May; 22(1):288. PubMed ID: 34051729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of species-specific RNA N6-methyladinosine modification sites from RNA sequences.
    Wang R; Chung CR; Huang HD; Lee TY
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36715277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MSCAN: multi-scale self- and cross-attention network for RNA methylation site prediction.
    Wang H; Huang T; Wang D; Zeng W; Sun Y; Zhang L
    BMC Bioinformatics; 2024 Jan; 25(1):32. PubMed ID: 38233745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MetaAc4C: A multi-module deep learning framework for accurate prediction of N4-acetylcytidine sites based on pre-trained bidirectional encoder representation and generative adversarial networks.
    Li Z; Jin B; Fang J
    Genomics; 2024 Jan; 116(1):110749. PubMed ID: 38008265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adapt-Kcr: a novel deep learning framework for accurate prediction of lysine crotonylation sites based on learning embedding features and attention architecture.
    Li Z; Fang J; Wang S; Zhang L; Chen Y; Pian C
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35189635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. H2Opred: a robust and efficient hybrid deep learning model for predicting 2'-O-methylation sites in human RNA.
    Pham NT; Rakkiyapan R; Park J; Malik A; Manavalan B
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38180830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DeepSSPred: A Deep Learning Based Sulfenylation Site Predictor Via a Novel nSegmented Optimize Federated Feature Encoder.
    Khan ZU; Pi D
    Protein Pept Lett; 2021; 28(6):708-721. PubMed ID: 33267753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRMSNet: A deep learning model that uses convolution and residual multi-head self-attention block to predict RBPs for RNA sequence.
    Pan Z; Zhou S; Zou H; Liu C; Zang M; Liu T; Wang Q
    Proteins; 2023 Aug; 91(8):1032-1041. PubMed ID: 36935548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DGA-5mC: A 5-methylcytosine site prediction model based on an improved DenseNet and bidirectional GRU method.
    Jia J; Qin L; Lei R
    Math Biosci Eng; 2023 Mar; 20(6):9759-9780. PubMed ID: 37322910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deepm6A-MT: A deep learning-based method for identifying RNA N6-methyladenosine sites in multiple tissues.
    Huang G; Huang X; Jiang J
    Methods; 2024 Jun; 226():1-8. PubMed ID: 38485031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.