BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 36232459)

  • 1. Preparation and Characterization of Degradable Cellulose-Based Paper with Superhydrophobic, Antibacterial, and Barrier Properties for Food Packaging.
    Jiang X; Li Q; Li X; Meng Y; Ling Z; Ji Z; Chen F
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-strength and super-hydrophobic multilayered paper based on nano-silica coating and micro-fibrillated cellulose.
    Chen H; Wang B; Li J; Ying G; Chen K
    Carbohydr Polym; 2022 Jul; 288():119371. PubMed ID: 35450633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superhydrophobic cellulose paper with sustained antibacterial activity prepared by in-situ growth of carvacrol-loaded zinc-based metal organic framework nanorods for food packaging application.
    Yang R; Liu B; Yu F; Li H; Zhuang Y
    Int J Biol Macromol; 2023 Apr; 234():123712. PubMed ID: 36796565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of compostable packaging with antibacterial property and improved performance using sprayed coatings of modified cellulose nanocrystals.
    Huang S; Zou S; Wang Y
    Carbohydr Polym; 2023 Apr; 305():120539. PubMed ID: 36737191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Situ Fermentation of an Ultra-Strong, Microplastic-Free, and Biodegradable Multilayer Bacterial Cellulose Film for Food Packaging.
    Zhang Y; Chen G; Qin W; Men X; Liu L; Zhang Y; Li Q; Wang L; Zhang H
    ACS Appl Mater Interfaces; 2023 Sep; 15(37):44354-44363. PubMed ID: 37697629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A facile strategy to fabricate antibacterial hydrophobic, high-barrier, cellulose papersheets for food packaging.
    Huang H; Mao L; Wang W; Li Z; Qin C
    Int J Biol Macromol; 2023 May; 236():123630. PubMed ID: 36773867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(lactic acid)-based composite film reinforced with acetylated cellulose nanocrystals and ZnO nanoparticles for active food packaging.
    Yu F; Fei X; He Y; Li H
    Int J Biol Macromol; 2021 Sep; 186():770-779. PubMed ID: 34284052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of bio-based PLA/cellulose antibacterial packaging and its application for the storage of shiitake mushroom.
    Wang W; Niu B; Liu R; Chen H; Fang X; Wu W; Wang G; Gao H; Mu H
    Food Chem; 2023 Dec; 429():136905. PubMed ID: 37487388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of formyl cellulose and its enhancement effect on the mechanical and barrier properties of polylactic acid films.
    Long S; Zhong L; Lin X; Chang X; Wu F; Wu R; Xie F
    Int J Biol Macromol; 2021 Mar; 172():82-92. PubMed ID: 33428950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of bio-based cellulose acetate/chitosan composite film with oxygen and water resistant properties.
    Zhou H; Tong H; Lu J; Cheng Y; Qian F; Tao Y; Wang H
    Carbohydr Polym; 2021 Oct; 270():118381. PubMed ID: 34364623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust and versatile superhydrophobic cellulose-based composite film with superior UV shielding and heat-barrier performances for sustainable packaging.
    Liao Y; Wang C; Dong Y; Yu HY
    Int J Biol Macromol; 2023 Dec; 253(Pt 5):127178. PubMed ID: 37783246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antibacterial and degradable properties of β-cyclodextrin-TiO
    Goñi-Ciaurriz L; Vélaz I
    Int J Biol Macromol; 2022 Sep; 216():347-360. PubMed ID: 35798078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of biobased multilayer films with improved compatibility between polylactic acid-chitosan as a function of transition coating of SiOx.
    Li Y; Ren J; Wang B; Lu W; Wang H; Hou W
    Int J Biol Macromol; 2020 Dec; 165(Pt A):1258-1263. PubMed ID: 33038397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antimicrobial and hydrophobic cellulose paper prepared by covalently attaching cinnamaldehyde for strawberries preservation.
    Huo J; Lv X; Duan Q; Jiang R; Yang D; Sun L; Li S; Qian X
    Int J Biol Macromol; 2024 May; 268(Pt 2):131790. PubMed ID: 38677693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic Robust Starch Composite Films with Super-Hydrophobicity and Vivid Structural Colors.
    Wang Y; Fan J; Zhao H; Song X; Ji Z; Xie C; Chen F; Meng Y
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formulation and application of poly lactic acid, gum, and cellulose-based ternary bioplastic for smart food packaging: A review.
    Mavai S; Bains A; Sridhar K; Rashid S; Elossaily GM; Ali N; Chawla P; Sharma M
    Int J Biol Macromol; 2024 May; 268(Pt 1):131687. PubMed ID: 38642692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Starch-fiber foaming biodegradable composites with polylactic acid hydrophobic surface.
    Yang J; Li Y; Li X; Ji M; Peng S; Man J; Zhou L; Li F; Zhang C
    Int J Biol Macromol; 2024 May; 267(Pt 1):131406. PubMed ID: 38582472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradable cellulose/curcumin films with Janus structure for food packaging and freshness monitoring.
    Wang W; Liu X; Guo F; Yu Y; Lu J; Li Y; Cheng Q; Peng J; Yu G
    Carbohydr Polym; 2024 Jan; 324():121516. PubMed ID: 37985100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Paper-Based Oil Barrier Packaging using Lignin-Containing Cellulose Nanofibrils.
    H Tayeb A; Tajvidi M; Bousfield D
    Molecules; 2020 Mar; 25(6):. PubMed ID: 32188070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrophobic-modified nano-cellulose fiber/PLA biodegradable composites for lowering water vapor transmission rate (WVTR) of paper.
    Song Z; Xiao H; Zhao Y
    Carbohydr Polym; 2014 Oct; 111():442-8. PubMed ID: 25037373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.