BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 36232506)

  • 1. Changes in Proximal Tubular Reabsorption Modulate Microvascular Regulation via the TGF System.
    Poursharif S; Hamza S; Braam B
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Renal Effects of Sodium-Glucose Co-Transporter Inhibitors.
    Thomson SC; Vallon V
    Am J Cardiol; 2019 Dec; 124 Suppl 1(Suppl 1):S28-S35. PubMed ID: 31741437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium/glucose cotransporter 2 inhibitors and prevention of diabetic nephropathy: targeting the renal tubule in diabetes.
    De Nicola L; Gabbai FB; Liberti ME; Sagliocca A; Conte G; Minutolo R
    Am J Kidney Dis; 2014 Jul; 64(1):16-24. PubMed ID: 24673844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The tubular hypothesis of nephron filtration and diabetic kidney disease.
    Vallon V; Thomson SC
    Nat Rev Nephrol; 2020 Jun; 16(6):317-336. PubMed ID: 32152499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of SGLT2 inhibitor and dietary NaCl on glomerular hemodynamics assessed by micropuncture in diabetic rats.
    Thomson SC; Vallon V
    Am J Physiol Renal Physiol; 2021 May; 320(5):F761-F771. PubMed ID: 33645318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Renoprotective mechanisms of sodium-glucose co-transporter 2 (SGLT2) inhibitors against the progression of diabetic kidney disease.
    Ravindran S; Munusamy S
    J Cell Physiol; 2022 Feb; 237(2):1182-1205. PubMed ID: 34713897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Renoprotective Effects of SGLT2 Inhibitors.
    Vallon V
    Heart Fail Clin; 2022 Oct; 18(4):539-549. PubMed ID: 36216484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interplay of adenosine monophosphate-activated protein kinase/sirtuin-1 activation and sodium influx inhibition mediates the renal benefits of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes: A novel conceptual framework.
    Packer M
    Diabetes Obes Metab; 2020 May; 22(5):734-742. PubMed ID: 31916329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competing Effects of Renin Angiotensin System Blockade and Sodium-Glucose Cotransporter-2 Inhibitors on Erythropoietin Secretion in Diabetes.
    Marathias KP; Lambadiari VA; Markakis KP; Vlahakos VD; Bacharaki D; Raptis AE; Dimitriadis GD; Vlahakos DV
    Am J Nephrol; 2020; 51(5):349-356. PubMed ID: 32241009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium-glucose cotransporter-2 inhibition and the potential for renal protection in diabetic nephropathy.
    Škrtić M; Cherney DZ
    Curr Opin Nephrol Hypertens; 2015 Jan; 24(1):96-103. PubMed ID: 25470017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition.
    Vallon V; Thomson SC
    Diabetologia; 2017 Feb; 60(2):215-225. PubMed ID: 27878313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SGLT2 Inhibitors and the Diabetic Kidney.
    Fioretto P; Zambon A; Rossato M; Busetto L; Vettor R
    Diabetes Care; 2016 Aug; 39 Suppl 2():S165-71. PubMed ID: 27440829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Renal Protection with SGLT2 Inhibitors: Effects in Acute and Chronic Kidney Disease.
    Bailey CJ; Day C; Bellary S
    Curr Diab Rep; 2022 Jan; 22(1):39-52. PubMed ID: 35113333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of renal tubule-specific knockdown of the Na
    Onishi A; Fu Y; Darshi M; Crespo-Masip M; Huang W; Song P; Patel R; Kim YC; Nespoux J; Freeman B; Soleimani M; Thomson S; Sharma K; Vallon V
    Am J Physiol Renal Physiol; 2019 Aug; 317(2):F419-F434. PubMed ID: 31166707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-protein diet: A barrier to the nephroprotective effects of sodium-glucose co-transporter-2 inhibitors?
    Mazzucato M; Fioretto P; Avogaro A
    Diabetes Obes Metab; 2020 Sep; 22(9):1511-1515. PubMed ID: 32350981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Knockout of Na
    Song P; Huang W; Onishi A; Patel R; Kim YC; van Ginkel C; Fu Y; Freeman B; Koepsell H; Thomson S; Liu R; Vallon V
    Am J Physiol Renal Physiol; 2019 Jul; 317(1):F207-F217. PubMed ID: 31091127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Benefit of Sodium-Glucose Co-Transporter Inhibition in Heart Failure: The Role of the Kidney.
    Gronda E; Vanoli E; Iacoviello M; Caldarola P; Gabrielli D; Tavazzi L
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36233288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tubuloglomerular and connecting tubuloglomerular feedback during inhibition of various Na transporters in the nephron.
    Wang H; D'Ambrosio MA; Ren Y; Monu SR; Leung P; Kutskill K; Garvin JL; Janic B; Peterson EL; Carretero OA
    Am J Physiol Renal Physiol; 2015 May; 308(9):F1026-31. PubMed ID: 25715987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intratubular application of sodium azide inhibits loop of Henle reabsorption and tubuloglomerular feedback response in anesthetized rats.
    Huang DY; Osswald H; Vallon V
    Naunyn Schmiedebergs Arch Pharmacol; 1998 Sep; 358(3):367-73. PubMed ID: 9774225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice.
    Vallon V; Gerasimova M; Rose MA; Masuda T; Satriano J; Mayoux E; Koepsell H; Thomson SC; Rieg T
    Am J Physiol Renal Physiol; 2014 Jan; 306(2):F194-204. PubMed ID: 24226524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.