These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 36232705)

  • 1. Three-Way DNA Junction as an End Label for DNA in Atomic Force Microscopy Studies.
    Sun Z; Stormberg T; Filliaux S; Lyubchenko YL
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of nucleosomes assessed with time-lapse high-speed atomic force microscopy.
    Miyagi A; Ando T; Lyubchenko YL
    Biochemistry; 2011 Sep; 50(37):7901-8. PubMed ID: 21846149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing The Structure And Dynamics Of Nucleosomes Using Atomic Force Microscopy Imaging.
    Stumme-Diers MP; Stormberg T; Sun Z; Lyubchenko YL
    J Vis Exp; 2019 Jan; (143):. PubMed ID: 30774135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-molecule imaging of dynamic motions of biomolecules in DNA origami nanostructures using high-speed atomic force microscopy.
    Endo M; Sugiyama H
    Acc Chem Res; 2014 Jun; 47(6):1645-53. PubMed ID: 24601497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembly of Centromere Chromatin for Characterization by High-Speed Time-Lapse Atomic Force Microscopy.
    Stumme-Diers MP; Banerjee S; Sun Z; Lyubchenko YL
    Methods Mol Biol; 2018; 1814():225-242. PubMed ID: 29956236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Observation of Dynamic Movement of DNA Molecules in DNA Origami Imaged Using High-Speed AFM.
    Endo M; Sugiyama H
    Methods Mol Biol; 2018; 1814():213-224. PubMed ID: 29956235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and dynamics of three-way DNA junctions: atomic force microscopy studies.
    Shlyakhtenko LS; Potaman VN; Sinden RR; Gall AA; Lyubchenko YL
    Nucleic Acids Res; 2000 Sep; 28(18):3472-7. PubMed ID: 10982865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatin imaging with time-lapse atomic force microscopy.
    Lyubchenko YL; Shlyakhtenko LS
    Methods Mol Biol; 2015; 1288():27-42. PubMed ID: 25827873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AFM for analysis of structure and dynamics of DNA and protein-DNA complexes.
    Lyubchenko YL; Shlyakhtenko LS
    Methods; 2009 Mar; 47(3):206-13. PubMed ID: 18835446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nano-Surveillance: Tracking Individual Molecules in a Sea of Chromatin.
    Melters DP; Dalal Y
    J Mol Biol; 2021 Mar; 433(6):166720. PubMed ID: 33221335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence-dependent nucleosome nanoscale structure characterized by atomic force microscopy.
    Stormberg T; Stumme-Diers M; Lyubchenko YL
    FASEB J; 2019 Oct; 33(10):10916-10923. PubMed ID: 31284760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of nucleosomes revealed by time-lapse atomic force microscopy.
    Shlyakhtenko LS; Lushnikov AY; Lyubchenko YL
    Biochemistry; 2009 Aug; 48(33):7842-8. PubMed ID: 19618963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of nucleosomal structures measured by high-speed atomic force microscopy.
    Katan AJ; Vlijm R; Lusser A; Dekker C
    Small; 2015 Feb; 11(8):976-84. PubMed ID: 25336288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A statistical thermodynamic model applied to experimental AFM population and location data is able to quantify DNA-histone binding strength and internucleosomal interaction differences between acetylated and unacetylated nucleosomal arrays.
    Solis FJ; Bash R; Yodh J; Lindsay SM; Lohr D
    Biophys J; 2004 Nov; 87(5):3372-87. PubMed ID: 15347582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics of DNA and nucleosomes in solution studied by fast-scanning atomic force microscopy.
    Suzuki Y; Higuchi Y; Hizume K; Yokokawa M; Yoshimura SH; Yoshikawa K; Takeyasu K
    Ultramicroscopy; 2010 May; 110(6):682-8. PubMed ID: 20236766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-speed near-field fluorescence microscopy combined with high-speed atomic force microscopy for biological studies.
    Umakoshi T; Fukuda S; Iino R; Uchihashi T; Ando T
    Biochim Biophys Acta Gen Subj; 2020 Feb; 1864(2):129325. PubMed ID: 30890438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studying Structure and Functions of Nucleosomes with Atomic Force Microscopy.
    Ukraintsev AA; Kutuzov MM; Lavrik OI
    Biochemistry (Mosc); 2024 Apr; 89(4):674-687. PubMed ID: 38831504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging of DNA and Protein-DNA Complexes with Atomic Force Microscopy.
    Lyubchenko YL; Shlyakhtenko LS
    Crit Rev Eukaryot Gene Expr; 2016; 26(1):63-96. PubMed ID: 27278886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale Nucleosome Dynamics Assessed with Time-lapse AFM.
    Lyubchenko YL
    Biophys Rev; 2014 Jun; 6(2):181-190. PubMed ID: 24839467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using atomic force microscopy to study chromatin structure and nucleosome remodeling.
    Lohr D; Bash R; Wang H; Yodh J; Lindsay S
    Methods; 2007 Mar; 41(3):333-41. PubMed ID: 17309844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.