BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 36232840)

  • 1. Deep Learning Approaches for Detection of Breast Adenocarcinoma Causing Carcinogenic Mutations.
    Shah AA; Alturise F; Alkhalifah T; Khan YD
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of deep learning techniques for identification of sarcoma-causing carcinogenic mutations.
    Shah AA; Alturise F; Alkhalifah T; Khan YD
    Digit Health; 2022; 8():20552076221133703. PubMed ID: 36312852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning techniques for identification of carcinogenic mutations, which cause breast adenocarcinoma.
    Shah AA; Malik HAM; Mohammad A; Khan YD; Alourani A
    Sci Rep; 2022 Jul; 12(1):11738. PubMed ID: 35817838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An ensemble-based deep learning model for detection of mutation causing cutaneous melanoma.
    Ali Shah A; Shaker ASA; Jabbar S; Abbas Q; Al-Balawi TS; Celebi ME
    Sci Rep; 2023 Dec; 13(1):22251. PubMed ID: 38097641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EDLM: Ensemble Deep Learning Model to Detect Mutation for the Early Detection of Cholangiocarcinoma.
    Shah AA; Alturise F; Alkhalifah T; Faisal A; Khan YD
    Genes (Basel); 2023 May; 14(5):. PubMed ID: 37239464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Framework for Prediction of Oncogenomic Progression Aiding Personalized Treatment of Gastric Cancer.
    Alotaibi FM; Khan YD
    Diagnostics (Basel); 2023 Jul; 13(13):. PubMed ID: 37443684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Hybrid Deep Learning Model for Metastatic Cancer Detection.
    Ahmad S; Ullah T; Ahmad I; Al-Sharabi A; Ullah K; Khan RA; Rasheed S; Ullah I; Uddin MN; Ali MS
    Comput Intell Neurosci; 2022; 2022():8141530. PubMed ID: 35785076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time series forecasting of new cases and new deaths rate for COVID-19 using deep learning methods.
    Ayoobi N; Sharifrazi D; Alizadehsani R; Shoeibi A; Gorriz JM; Moosaei H; Khosravi A; Nahavandi S; Gholamzadeh Chofreh A; Goni FA; Klemeš JJ; Mosavi A
    Results Phys; 2021 Aug; 27():104495. PubMed ID: 34221854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracting comprehensive clinical information for breast cancer using deep learning methods.
    Zhang X; Zhang Y; Zhang Q; Ren Y; Qiu T; Ma J; Sun Q
    Int J Med Inform; 2019 Dec; 132():103985. PubMed ID: 31627032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study on deep learning models for text classification of unstructured medical notes with various levels of class imbalance.
    Lu H; Ehwerhemuepha L; Rakovski C
    BMC Med Res Methodol; 2022 Jul; 22(1):181. PubMed ID: 35780100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Traffic flow prediction using bi-directional gated recurrent unit method.
    Wang S; Shao C; Zhang J; Zheng Y; Meng M
    Urban Inform; 2022; 1(1):16. PubMed ID: 36471871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid Deep Recurrent Neural Networks for Noise Reduction of MEMS-IMU with Static and Dynamic Conditions.
    Han S; Meng Z; Zhang X; Yan Y
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33672478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Character gated recurrent neural networks for Arabic sentiment analysis.
    Omara E; Mousa M; Ismail N
    Sci Rep; 2022 Jun; 12(1):9779. PubMed ID: 35697814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM.
    Shahid F; Zameer A; Muneeb M
    Chaos Solitons Fractals; 2020 Nov; 140():110212. PubMed ID: 32839642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using a Convolutional Neural Network and Convolutional Long Short-term Memory to Automatically Detect Aneurysms on 2D Digital Subtraction Angiography Images: Framework Development and Validation.
    Liao J; Liu L; Duan H; Huang Y; Zhou L; Chen L; Wang C
    JMIR Med Inform; 2022 Mar; 10(3):e28880. PubMed ID: 35294371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual field prediction using a deep bidirectional gated recurrent unit network model.
    Kim H; Lee J; Moon S; Kim S; Kim T; Jin SW; Kim JL; Shin J; Lee SU; Jang G; Hu Y; Park JR
    Sci Rep; 2023 Jul; 13(1):11154. PubMed ID: 37429862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neonatal sleep stage identification using long short-term memory learning system.
    Fraiwan L; Alkhodari M
    Med Biol Eng Comput; 2020 Jun; 58(6):1383-1391. PubMed ID: 32281071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterogeneous Ensemble Deep Learning Model for Enhanced Arabic Sentiment Analysis.
    Saleh H; Mostafa S; Alharbi A; El-Sappagh S; Alkhalifah T
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Learning-Assisted Gait Parameter Assessment for Neurodegenerative Diseases: Model Development and Validation.
    Jing Y; Qin P; Fan X; Qiang W; Wencheng Z; Sun W; Tian F; Wang D
    J Med Internet Res; 2023 Jul; 25():e46427. PubMed ID: 37405831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Learning for SARS COV-2 Genome Sequences.
    Whata A; Chimedza C
    IEEE Access; 2021; 9():59597-59611. PubMed ID: 34812391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.