BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 36232949)

  • 1. Prolonged Exposure to High Temperature Inhibits Shoot Primary and Root Secondary Growth in
    Hong J; Geem KR; Kim J; Jo IH; Yang TJ; Shim D; Ryu H
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36232949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrate enhances the secondary growth of storage roots in
    Geem KR; Kim J; Bae W; Jee MG; Yu J; Jang I; Lee DY; Hong CP; Shim D; Ryu H
    J Ginseng Res; 2023 May; 47(3):469-478. PubMed ID: 37252286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gibberellin Signaling Promotes the Secondary Growth of Storage Roots in
    Hong CP; Kim J; Lee J; Yoo SI; Bae W; Geem KR; Yu J; Jang I; Jo IH; Cho H; Shim D; Ryu H
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drought Resistance and Ginsenosides Biosynthesis in Response to Abscisic Acid in
    Kong L; Chen P; Chang C
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytokinin signaling promotes root secondary growth and bud formation in
    Geem KR; Lim Y; Hong J; Bae W; Lee J; Han S; Gil J; Cho H; Ryu H
    J Ginseng Res; 2024 Mar; 48(2):220-228. PubMed ID: 38465220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome analysis provides insights into the cell wall and aluminum toxicity related to rusty root syndrome of
    Tong A; Liu W; Wang H; Liu X; Xia G; Zhu J
    Front Plant Sci; 2023; 14():1142211. PubMed ID: 37384362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The integration of GC-MS and LC-MS to assay the metabolomics profiling in Panax ginseng and Panax quinquefolius reveals a tissue- and species-specific connectivity of primary metabolites and ginsenosides accumulation.
    Liu J; Liu Y; Wang Y; Abozeid A; Zu YG; Tang ZH
    J Pharm Biomed Anal; 2017 Feb; 135():176-185. PubMed ID: 28038384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic dynamics and physiological adaptation of Panax ginseng during development.
    Kim YJ; Joo SC; Shi J; Hu C; Quan S; Hu J; Sukweenadhi J; Mohanan P; Yang DC; Zhang D
    Plant Cell Rep; 2018 Mar; 37(3):393-410. PubMed ID: 29150823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional Characterization of
    Hwang H; Lee HY; Ryu H; Cho H
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33352948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endophytic Bacteria Isolated from Panax ginseng Improves Ginsenoside Accumulation in Adventitious Ginseng Root Culture.
    Song X; Wu H; Yin Z; Lian M; Yin C
    Molecules; 2017 May; 22(6):. PubMed ID: 28545250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive characterization of a time-course transcriptional response induced by autotoxins in Panax ginseng using RNA-Seq.
    Wu B; Long Q; Gao Y; Wang Z; Shao T; Liu Y; Li Y; Ding W
    BMC Genomics; 2015 Nov; 16():1010. PubMed ID: 26608743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shoot phytochrome B modulates reactive oxygen species homeostasis in roots via abscisic acid signaling in Arabidopsis.
    Ha JH; Kim JH; Kim SG; Sim HJ; Lee G; Halitschke R; Baldwin IT; Kim JI; Park CM
    Plant J; 2018 Jun; 94(5):790-798. PubMed ID: 29570885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic changes in different growth periods of ginseng roots.
    Ma R; Sun L; Chen X; Jiang R; Sun H; Zhao D
    Plant Physiol Biochem; 2013 Jun; 67():20-32. PubMed ID: 23537955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mRNA and miRNA transcriptomic landscape of Panax ginseng under the high ambient temperature.
    Jung I; Kang H; Kim JU; Chang H; Kim S; Jung W
    BMC Syst Biol; 2018 Mar; 12(Suppl 2):27. PubMed ID: 29560829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The secrets of Oriental panacea: Panax ginseng.
    Colzani M; Altomare A; Caliendo M; Aldini G; Righetti PG; Fasoli E
    J Proteomics; 2016 Jan; 130():150-9. PubMed ID: 26388432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-Course Transcriptome Analysis Reveals Resistance Genes of Panax ginseng Induced by Cylindrocarpon destructans Infection Using RNA-Seq.
    Gao Y; He X; Wu B; Long Q; Shao T; Wang Z; Wei J; Li Y; Ding W
    PLoS One; 2016; 11(2):e0149408. PubMed ID: 26890788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quality evaluation of Panax ginseng adventitious roots based on ginsenoside constituents, functional genes, and ferric-reducing antioxidant power.
    Liang W; Wang S; Yao L; Wang J; Gao W
    J Food Biochem; 2019 Aug; 43(8):e12901. PubMed ID: 31368571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abscisic acid-mediated phytochrome B signaling promotes primary root growth in Arabidopsis.
    Gil KE; Ha JH; Park CM
    Plant Signal Behav; 2018; 13(5):e1473684. PubMed ID: 29939823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biogenic Synthesis and Spatial Distribution of Endogenous Phytohormones and Ginsenosides Provide Insights on Their Intrinsic Relevance in
    Chen K; Liu J; Ji R; Chen T; Zhou X; Yang J; Tong Y; Jiang C; Zhou J; Zhao Y; Jin Y; Yuan Y; Huang L
    Front Plant Sci; 2018; 9():1951. PubMed ID: 30687354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of antioxidant compounds by culture of Panax ginseng C.A. Meyer hairy roots: I. Enhanced production of secondary metabolite in hairy root cultures by elicitation.
    Jeong GT; Park DH; Ryu HW; Hwang B; Woo JC; Kim D; Kim SW
    Appl Biochem Biotechnol; 2005; 121-124():1147-57. PubMed ID: 15930588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.