BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

464 related articles for article (PubMed ID: 36232956)

  • 1. Bioengineering Approaches to Fight against Orthopedic Biomaterials Related-Infections.
    Barros J; Monteiro FJ; Ferraz MP
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36232956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial Biofilm Formation on Biomaterials and Approaches to Its Treatment and Prevention.
    Li P; Yin R; Cheng J; Lin J
    Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward Designing of Anti-infective Hydrogels for Orthopedic Implants: From Lab to Clinic.
    Garg D; Matai I; Sachdev A
    ACS Biomater Sci Eng; 2021 Jun; 7(6):1933-1961. PubMed ID: 33826312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antifouling and antimicrobial biomaterials: an overview.
    Francolini I; Vuotto C; Piozzi A; Donelli G
    APMIS; 2017 Apr; 125(4):392-417. PubMed ID: 28407425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selenium nanoparticles as anti-infective implant coatings for trauma orthopedics against methicillin-resistant
    Tran PA; O'Brien-Simpson N; Palmer JA; Bock N; Reynolds EC; Webster TJ; Deva A; Morrison WA; O'Connor AJ
    Int J Nanomedicine; 2019; 14():4613-4624. PubMed ID: 31308651
    [No Abstract]   [Full Text] [Related]  

  • 6. Engineered Chimeric Peptides as Antimicrobial Surface Coating Agents toward Infection-Free Implants.
    Yazici H; O'Neill MB; Kacar T; Wilson BR; Oren EE; Sarikaya M; Tamerler C
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5070-81. PubMed ID: 26795060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanobiotechnology Perspectives on Prevention and Treatment of Ortho-paedic Implant Associated Infection.
    Borse V; Pawar V; Shetty G; Mullaji A; Srivastava R
    Curr Drug Deliv; 2016; 13(2):175-85. PubMed ID: 26263909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An overview of the methodological approach to the in vitro study of anti-infective biomaterials.
    Campoccia D; Cangini I; Selan L; Vercellino M; Montanaro L; Visai L; Arciola CR
    Int J Artif Organs; 2012 Oct; 35(10):800-16. PubMed ID: 23065889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scenery of Staphylococcus implant infections in orthopedics.
    Montanaro L; Speziale P; Campoccia D; Ravaioli S; Cangini I; Pietrocola G; Giannini S; Arciola CR
    Future Microbiol; 2011 Nov; 6(11):1329-49. PubMed ID: 22082292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in dual functional antimicrobial and osteoinductive biomaterials for orthopaedic applications.
    Afewerki S; Bassous N; Harb S; Palo-Nieto C; Ruiz-Esparza GU; Marciano FR; Webster TJ; Furtado ASA; Lobo AO
    Nanomedicine; 2020 Feb; 24():102143. PubMed ID: 31862427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review of the biomaterials technologies for infection-resistant surfaces.
    Campoccia D; Montanaro L; Arciola CR
    Biomaterials; 2013 Nov; 34(34):8533-54. PubMed ID: 23953781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antibacterial coating of implants in orthopaedics and trauma: a classification proposal in an evolving panorama.
    Romanò CL; Scarponi S; Gallazzi E; Romanò D; Drago L
    J Orthop Surg Res; 2015 Oct; 10():157. PubMed ID: 26429342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antibiofilm agents and implant-related infections in orthopaedics: where are we?
    Romanò CL; Toscano M; Romanò D; Drago L
    J Chemother; 2013 Apr; 25(2):67-80. PubMed ID: 23684354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review of the clinical implications of anti-infective biomaterials and infection-resistant surfaces.
    Campoccia D; Montanaro L; Arciola CR
    Biomaterials; 2013 Nov; 34(33):8018-29. PubMed ID: 23932292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanotechnology-based biomaterials for orthopaedic applications: Recent advances and future prospects.
    Kumar S; Nehra M; Kedia D; Dilbaghi N; Tankeshwar K; Kim KH
    Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110154. PubMed ID: 31753376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sphingosine is able to prevent and eliminate Staphylococcus epidermidis biofilm formation on different orthopedic implant materials in vitro.
    Beck S; Sehl C; Voortmann S; Verhasselt HL; Edwards MJ; Buer J; Hasenberg M; Gulbins E; Becker KA
    J Mol Med (Berl); 2020 Feb; 98(2):209-219. PubMed ID: 31863153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anti-Periprosthetic Infection Strategies: From Implant Surface Topographical Engineering to Smart Drug-Releasing Coatings.
    Ghimire A; Song J
    ACS Appl Mater Interfaces; 2021 May; 13(18):20921-20937. PubMed ID: 33914499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Advances in the Evaluation of Antimicrobial Materials for Resolution of Orthopedic Implant-Associated Infections
    Cyphert EL; Zhang N; Learn GD; Hernandez CJ; von Recum HA
    ACS Infect Dis; 2021 Dec; 7(12):3125-3160. PubMed ID: 34761915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of Propionibacterium acnes biofilms on orthopaedic biomaterials and their susceptibility to antimicrobials.
    Ramage G; Tunney MM; Patrick S; Gorman SP; Nixon JR
    Biomaterials; 2003 Aug; 24(19):3221-7. PubMed ID: 12763449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants.
    Jaggessar A; Shahali H; Mathew A; Yarlagadda PKDV
    J Nanobiotechnology; 2017 Oct; 15(1):64. PubMed ID: 28969628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.