These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36233037)

  • 1. The Application of Cellulose Acetate Membranes for Separation of Fermentation Broths by the Reverse Osmosis: A Feasibility Study.
    Tomczak W; Gryta M
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36233037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Application of the Nanofiltration Membrane NF270 for Separation of Fermentation Broths.
    Tomczak W
    Membranes (Basel); 2022 Dec; 12(12):. PubMed ID: 36557170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reverse osmosis processing of organic model compounds and fermentation broths.
    Diltz RA; Marolla TV; Henley MV; Li L
    Bioresour Technol; 2007 Feb; 98(3):686-95. PubMed ID: 16600592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The feasibility of nanofiltration membrane bioreactor (NF-MBR)+reverse osmosis (RO) process for water reclamation: Comparison with ultrafiltration membrane bioreactor (UF-MBR)+RO process.
    Tay MF; Liu C; Cornelissen ER; Wu B; Chong TH
    Water Res; 2018 Feb; 129():180-189. PubMed ID: 29149673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of transmembrane hydraulic pressure on performance of forward osmosis membranes.
    Coday BD; Heil DM; Xu P; Cath TY
    Environ Sci Technol; 2013 Mar; 47(5):2386-93. PubMed ID: 23363015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alginate fouling reduction of functionalized carbon nanotube blended cellulose acetate membrane in forward osmosis.
    Choi HG; Son M; Yoon S; Celik E; Kang S; Park H; Park CH; Choi H
    Chemosphere; 2015 Oct; 136():204-10. PubMed ID: 26022283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes.
    Yüksel S; Kabay N; Yüksel M
    J Hazard Mater; 2013 Dec; 263 Pt 2():307-10. PubMed ID: 23731784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separate and concentrate lactic acid using combination of nanofiltration and reverse osmosis membranes.
    Li Y; Shahbazi A; Williams K; Wan C
    Appl Biochem Biotechnol; 2008 Mar; 147(1-3):1-9. PubMed ID: 18401749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Additive-optimized micro-structure in cellulose acetate butyrate-based reverse osmosis membrane for desalination.
    Liu J; Qin X; Feng X; Li F; Liang J; Hu D
    Chemosphere; 2023 Jun; 327():138512. PubMed ID: 36972876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design considerations for wastewater treatment by reverse osmosis.
    Bartels CR; Wilf M; Andes K; Iong J
    Water Sci Technol; 2005; 51(6-7):473-82. PubMed ID: 16004010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High rejection reverse osmosis membrane for removal of N-nitrosamines and their precursors.
    Fujioka T; Ishida KP; Shintani T; Kodamatani H
    Water Res; 2018 Mar; 131():45-51. PubMed ID: 29268083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and performance of PET mesh enhanced cellulose acetate membranes for forward osmosis.
    Li G; Wang J; Hou D; Bai Y; Liu H
    J Environ Sci (China); 2016 Jul; 45():7-17. PubMed ID: 27372114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly permeable double-skinned forward osmosis membranes for anti-fouling in the emulsified oil-water separation process.
    Duong PH; Chung TS; Wei S; Irish L
    Environ Sci Technol; 2014 Apr; 48(8):4537-45. PubMed ID: 24621207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation, anti-fouling, and chlorine resistance of the polyamide reverse osmosis membrane: From mechanisms to mitigation strategies.
    Liu C; Wang W; Yang B; Xiao K; Zhao H
    Water Res; 2021 May; 195():116976. PubMed ID: 33706215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-Flow Microfiltration of Glycerol Fermentation Broths with
    Tomczak W; Gryta M
    Membranes (Basel); 2020 Apr; 10(4):. PubMed ID: 32276458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fouling of reverse osmosis and nanofiltration membranes by dairy industry effluents.
    Turan M; Ates A; Inanc B
    Water Sci Technol; 2002; 45(12):355-60. PubMed ID: 12201123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sustainable water recovery from oily wastewater via forward osmosis-membrane distillation (FO-MD).
    Zhang S; Wang P; Fu X; Chung TS
    Water Res; 2014 Apr; 52():112-21. PubMed ID: 24463175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating the impacts of membrane type, coating, fouling, chemical properties and water chemistry on reverse osmosis rejection of seven nitrosoalklyamines, including NDMA.
    Steinle-Darling E; Zedda M; Plumlee MH; Ridgway HF; Reinhard M
    Water Res; 2007 Sep; 41(17):3959-67. PubMed ID: 17582457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of forward osmosis technology in crude glycerol fermentation biorefinery-potential and challenges.
    Kalafatakis S; Braekevelt S; Lymperatou A; Zarebska A; Hélix-Nielsen C; Lange L; Skiadas IV; Gavala HN
    Bioprocess Biosyst Eng; 2018 Aug; 41(8):1089-1101. PubMed ID: 29691653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of fouling on separation performance by forward osmosis: the role of specific organic foulants.
    Zheng L; Price WE; Nghiem LD
    Environ Sci Pollut Res Int; 2019 Nov; 26(33):33758-33769. PubMed ID: 29766436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.