These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
306 related articles for article (PubMed ID: 36233104)
1. Physiological and Transcriptional Analysis Reveals the Response Mechanism of Shen S; Yan W; Xie S; Yu J; Yao G; Xia P; Wu Y; Yang H Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36233104 [TBL] [Abstract][Full Text] [Related]
2. Transcription Factor ERF194 Modulates the Stress-Related Physiology to Enhance Drought Tolerance of Poplar. Huan X; Wang X; Zou S; Zhao K; Han Y; Wang S Int J Mol Sci; 2023 Jan; 24(1):. PubMed ID: 36614232 [TBL] [Abstract][Full Text] [Related]
3. Integrative Metabolome and Transcriptome Analysis Reveals the Regulatory Network of Flavonoid Biosynthesis in Response to MeJA in Yan H; Zheng W; Wang Y; Wu Y; Yu J; Xia P Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012624 [TBL] [Abstract][Full Text] [Related]
4. Effect of progressive drought stress on growth, leaf gas exchange, and antioxidant production in two maize cultivars. Anjum SA; Tanveer M; Ashraf U; Hussain S; Shahzad B; Khan I; Wang L Environ Sci Pollut Res Int; 2016 Sep; 23(17):17132-41. PubMed ID: 27215981 [TBL] [Abstract][Full Text] [Related]
5. Transcriptome analysis of the tea oil camellia (Camellia oleifera) reveals candidate drought stress genes. Dong B; Wu B; Hong W; Li X; Li Z; Xue L; Huang Y PLoS One; 2017; 12(7):e0181835. PubMed ID: 28759610 [TBL] [Abstract][Full Text] [Related]
6. Key Maize Drought-Responsive Genes and Pathways Revealed by Comparative Transcriptome and Physiological Analyses of Contrasting Inbred Lines. Zenda T; Liu S; Wang X; Liu G; Jin H; Dong A; Yang Y; Duan H Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30871211 [TBL] [Abstract][Full Text] [Related]
7. Ionomic and metabolic responses of wheat seedlings to PEG-6000-simulated drought stress under two phosphorus levels. Chunyan L; Xiangchi Z; Chao L; Cheng L PLoS One; 2022; 17(9):e0274915. PubMed ID: 36126078 [TBL] [Abstract][Full Text] [Related]
8. Biochemical and transcriptomic analyses of drought stress responses of LY1306 tobacco strain. Yang H; Zhao L; Zhao S; Wang J; Shi H Sci Rep; 2017 Dec; 7(1):17442. PubMed ID: 29234072 [TBL] [Abstract][Full Text] [Related]
9. Physiological and proteomic changes of Castanopsis fissa in response to drought stress. Li C; Chen S; Wang Y Sci Rep; 2023 Aug; 13(1):12567. PubMed ID: 37532761 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of drought resistance and transcriptome analysis for the identification of drought-responsive genes in Iris germanica. Zhang J; Huang D; Zhao X; Zhang M Sci Rep; 2021 Aug; 11(1):16308. PubMed ID: 34381085 [TBL] [Abstract][Full Text] [Related]
11. Comparative transcriptomic and physiological analyses of contrasting hybrid cultivars ND476 and ZX978 identify important differentially expressed genes and pathways regulating drought stress tolerance in maize. Liu G; Zenda T; Liu S; Wang X; Jin H; Dong A; Yang Y; Duan H Genes Genomics; 2020 Aug; 42(8):937-955. PubMed ID: 32623576 [TBL] [Abstract][Full Text] [Related]
12. Transcriptome sequencing and metabolome analysis reveal the molecular mechanism of Salvia miltiorrhiza in response to drought stress. Zhou Y; Bai YH; Han FX; Chen X; Wu FS; Liu Q; Ma WZ; Zhang YQ BMC Plant Biol; 2024 May; 24(1):446. PubMed ID: 38778268 [TBL] [Abstract][Full Text] [Related]
13. Molecular mechanism of mulberry response to drought stress revealed by complementary transcriptomic and iTRAQ analyses. Li R; Su X; Zhou R; Zhang Y; Wang T BMC Plant Biol; 2022 Jan; 22(1):36. PubMed ID: 35039015 [TBL] [Abstract][Full Text] [Related]
14. Combined proteomics, metabolomics and physiological analyses of rice growth and grain yield with heavy nitrogen application before and after drought. Du J; Shen T; Xiong Q; Zhu C; Peng X; He X; Fu J; Ouyang L; Bian J; Hu L; Sun X; Zhou D; He H; Zhong L; Chen X BMC Plant Biol; 2020 Dec; 20(1):556. PubMed ID: 33302870 [TBL] [Abstract][Full Text] [Related]
15. NO is involved in spermidine-induced drought tolerance in white clover via activation of antioxidant enzymes and genes. Peng D; Wang X; Li Z; Zhang Y; Peng Y; Li Y; He X; Zhang X; Ma X; Huang L; Yan Y Protoplasma; 2016 Sep; 253(5):1243-54. PubMed ID: 26338203 [TBL] [Abstract][Full Text] [Related]
16. Overexpression of the Stress-Inducible Wang Q; Ni J; Shah F; Liu W; Wang D; Yao Y; Hu H; Huang S; Hou J; Fu S; Wu L Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30781340 [TBL] [Abstract][Full Text] [Related]
17. Sulfur dioxide enhance drought tolerance of wheat seedlings through H Li LH; Yi HL; Xiu-Ping Liu ; Qi HX Ecotoxicol Environ Saf; 2021 Jan; 207():111248. PubMed ID: 32927156 [TBL] [Abstract][Full Text] [Related]
18. [Effects of drought stress on physiological and biochemical and chemical components of Cinnamomum cassia seedlings]. Zhong L; Liao PR; Liu CZ; Qian JP; He WC; Luo B; Yang Q Zhongguo Zhong Yao Za Zhi; 2021 May; 46(9):2158-2166. PubMed ID: 34047116 [TBL] [Abstract][Full Text] [Related]
19. Screening of mungbean for drought tolerance and transcriptome profiling between drought-tolerant and susceptible genotype in response to drought stress. Kumar S; Ayachit G; Sahoo L Plant Physiol Biochem; 2020 Dec; 157():229-238. PubMed ID: 33129069 [TBL] [Abstract][Full Text] [Related]
20. [Effects of combined drought and salinity stress on germination and physiological characteristics of maize (Zea mays).]. Yao HM; Li YS; Zhang TZ; Zhao J; Wang C; Wang HN; Fang YF Ying Yong Sheng Tai Xue Bao; 2016 Jul; 27(7):2301-2307. PubMed ID: 29737139 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]