BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 36233112)

  • 21. Supramolecular ultra-short carboxybenzyl-protected dehydropeptide-based hydrogels for drug delivery.
    Veloso SRS; Jervis PJ; Silva JFG; Hilliou L; Moura C; Pereira DM; Coutinho PJG; Martins JA; Castanheira EMS; Ferreira PMT
    Mater Sci Eng C Mater Biol Appl; 2021 Mar; 122():111869. PubMed ID: 33641890
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enzyme-Induced Supramolecular Order in Pyrene Dipeptide Hydrogels for the Development of an Efficient Energy-Transfer Template.
    Kaur H; Roy S
    Biomacromolecules; 2021 Jun; 22(6):2393-2407. PubMed ID: 33973785
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Construction of self-assembled nanostructure-based tetraphenylethylene dipeptides: supramolecular nanobelts as biomimetic hydrogels for cell adhesion and proliferation.
    Talloj SK; Mohammed M; Lin HC
    J Mater Chem B; 2020 Aug; 8(33):7483-7493. PubMed ID: 32667379
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Peptide based hydrogels for cancer drug release: modulation of stiffness, drug release and proteolytic stability of hydrogels by incorporating d-amino acid residue(s).
    Basu K; Baral A; Basak S; Dehsorkhi A; Nanda J; Bhunia D; Ghosh S; Castelletto V; Hamley IW; Banerjee A
    Chem Commun (Camb); 2016 Apr; 52(28):5045-8. PubMed ID: 26987440
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular design of peptide amphiphiles for controlled self-assembly and drug release.
    Liu Z; Tang X; Feng F; Xu J; Wu C; Dai G; Yue W; Zhong W; Xu K
    J Mater Chem B; 2021 Apr; 9(15):3326-3334. PubMed ID: 33881438
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of heterocyclic capping groups on the self-assembly of a dipeptide hydrogel.
    Martin AD; Wojciechowski JP; Warren H; in het Panhuis M; Thordarson P
    Soft Matter; 2016 Mar; 12(10):2700-7. PubMed ID: 26860207
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Controlling gelation with sequence: Towards programmable peptide hydrogels.
    Medini K; Mansel BW; Williams MAK; Brimble MA; Williams DE; Gerrard JA
    Acta Biomater; 2016 Oct; 43():30-37. PubMed ID: 27424085
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fine-Tuning the Linear Release Rate of Paclitaxel-Bearing Supramolecular Filament Hydrogels through Molecular Engineering.
    Chakroun RW; Wang F; Lin R; Wang Y; Su H; Pompa D; Cui H
    ACS Nano; 2019 Jul; 13(7):7780-7790. PubMed ID: 31117370
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-Assembly of Unprotected Dipeptides into Hydrogels: Water-Channels Make the Difference.
    Bellotto O; Kralj S; Melchionna M; Pengo P; Kisovec M; Podobnik M; De Zorzi R; Marchesan S
    Chembiochem; 2022 Jan; 23(2):e202100518. PubMed ID: 34784433
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Slow release of ciprofloxacin from β- cyclodextrin containing drug delivery system through network formation and supramolecular interactions.
    Singh B; Dhiman A; Rajneesh ; Kumar A
    Int J Biol Macromol; 2016 Nov; 92():390-400. PubMed ID: 27443589
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Supramolecular Phenylalanine-Derived Hydrogels for the Sustained Release of Functional Proteins.
    Jagrosse ML; Agredo P; Abraham BL; Toriki ES; Nilsson BL
    ACS Biomater Sci Eng; 2023 Feb; 9(2):784-796. PubMed ID: 36693219
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-assembled guanosine-hydrogels for drug-delivery application: Structural and mechanical characterization, methylene blue loading and controlled release.
    Yoneda JS; de Araujo DR; Sella F; Liguori GR; Liguori TTA; Moreira LFP; Spinozzi F; Mariani P; Itri R
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 121():111834. PubMed ID: 33579472
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Macroporous chitosan hydrogels: Effects of sulfur on the loading and release behaviour of amino acid-based compounds.
    Elviri L; Asadzadeh M; Cucinelli R; Bianchera A; Bettini R
    Carbohydr Polym; 2015 Nov; 132():50-8. PubMed ID: 26256323
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-assembly of short peptides to form hydrogels: design of building blocks, physical properties and technological applications.
    Fichman G; Gazit E
    Acta Biomater; 2014 Apr; 10(4):1671-82. PubMed ID: 23958781
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Peptide- and Metabolite-Based Hydrogels: Minimalistic Approach for the Identification and Characterization of Gelating Building Blocks.
    Tiwari OS; Rencus-Lazar S; Gazit E
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373477
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stimuli-Responsive, Pentapeptide, Nanofiber Hydrogel for Tissue Engineering.
    Tang JD; Mura C; Lampe KJ
    J Am Chem Soc; 2019 Mar; 141(12):4886-4899. PubMed ID: 30830776
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of peptide and guest charge on the structural, mechanical and release properties of β-sheet forming peptides.
    Roberts D; Rochas C; Saiani A; Miller AF
    Langmuir; 2012 Nov; 28(46):16196-206. PubMed ID: 23088490
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The interaction between self - assembling peptides and emodin and the controlled release of emodin from
    Wei W; Meng C; Wang Y; Huang Y; Du W; Li H; Liu Y; Song H; Tang F
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):3961-3975. PubMed ID: 31588802
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-healing DNA-based injectable hydrogels with reversible covalent linkages for controlled drug delivery.
    Basu S; Pacelli S; Paul A
    Acta Biomater; 2020 Mar; 105():159-169. PubMed ID: 31972367
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Divergent Supramolecular Gelation of Backbone Modified Short Hybrid δ-Peptides.
    Reja RM; Patel R; Kumar V; Jha A; Gopi HN
    Biomacromolecules; 2019 Mar; 20(3):1254-1262. PubMed ID: 30753058
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.