BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 36233112)

  • 41. Supramolecular hydrogel of a D-amino acid dipeptide for controlled drug release in vivo.
    Liang G; Yang Z; Zhang R; Li L; Fan Y; Kuang Y; Gao Y; Wang T; Lu WW; Xu B
    Langmuir; 2009 Aug; 25(15):8419-22. PubMed ID: 20050040
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Comprehensive Study on Self-Assembly and Gelation of C
    Hu T; Zhang Z; Hu H; Euston SR; Pan S
    Biomacromolecules; 2020 Feb; 21(2):670-679. PubMed ID: 31794666
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Aromatic-aromatic interactions induce the self-assembly of pentapeptidic derivatives in water to form nanofibers and supramolecular hydrogels.
    Ma M; Kuang Y; Gao Y; Zhang Y; Gao P; Xu B
    J Am Chem Soc; 2010 Mar; 132(8):2719-28. PubMed ID: 20131781
    [TBL] [Abstract][Full Text] [Related]  

  • 44. C-Terminal Residue of Ultrashort Peptides Impacts on Molecular Self-Assembly, Hydrogelation, and Interaction with Small-Molecule Drugs.
    Chan KH; Lee WH; Ni M; Loo Y; Hauser CAE
    Sci Rep; 2018 Nov; 8(1):17127. PubMed ID: 30459362
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials.
    Du X; Zhou J; Shi J; Xu B
    Chem Rev; 2015 Dec; 115(24):13165-307. PubMed ID: 26646318
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Anion Effects on the Supramolecular Self-Assembly of Cationic Phenylalanine Derivatives.
    Abraham BL; Agredo P; Mensah SG; Nilsson BL
    Langmuir; 2022 Dec; 38(50):15494-15505. PubMed ID: 36473193
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Self-assembly of amphiphilic Janus dendrimers into mechanically robust supramolecular hydrogels for sustained drug release.
    Nummelin S; Liljeström V; Saarikoski E; Ropponen J; Nykänen A; Linko V; Seppälä J; Hirvonen J; Ikkala O; Bimbo LM; Kostiainen MA
    Chemistry; 2015 Oct; 21(41):14433-9. PubMed ID: 26134175
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Supramolecular hydrogels made of basic biological building blocks.
    Du X; Zhou J; Xu B
    Chem Asian J; 2014 Jun; 9(6):1446-72. PubMed ID: 24623474
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Peptide-/Drug-Directed Self-Assembly of Hybrid Polyurethane Hydrogels for Wound Healing.
    Zhang F; Hu C; Kong Q; Luo R; Wang Y
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):37147-37155. PubMed ID: 31513742
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bioinspired short peptide hydrogel for versatile encapsulation and controlled release of growth factor therapeutics.
    Hiew SH; Wang JK; Koh K; Yang H; Bacha A; Lin J; Yip YS; Vos MIG; Chen L; Sobota RM; Tan NS; Tay CY; Miserez A
    Acta Biomater; 2021 Dec; 136():111-123. PubMed ID: 34551327
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Controlling Doxorubicin Release from a Peptide Hydrogel through Fine-Tuning of Drug-Peptide Fiber Interactions.
    Elsawy MA; Wychowaniec JK; Castillo Díaz LA; Smith AM; Miller AF; Saiani A
    Biomacromolecules; 2022 Jun; 23(6):2624-2634. PubMed ID: 35543610
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Isosteric Substitution of 4 H-1,2,4-Triazole by 1 H-1,2,3-Triazole in Isophthalic Derivative Enabled Hydrogel Formation for Controlled Drug Delivery.
    Häring M; Rodríguez-López J; Grijalvo S; Tautz M; Eritja R; Martín VS; Díaz Díaz D
    Mol Pharm; 2018 Aug; 15(8):2963-2972. PubMed ID: 29446950
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dynamic Tannic Acid Hydrogel with Self-Healing and pH Sensitivity for Controlled Release.
    Li P; Sui Y; Dai X; Fang Q; Sima H; Zhang C
    Macromol Biosci; 2021 Jun; 21(6):e2100055. PubMed ID: 33876558
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Single-atom substitution enables supramolecular diversity from dipeptide building blocks.
    Scarel E; Bellotto O; Rozhin P; Kralj S; Tortora M; Vargiu AV; De Zorzi R; Rossi B; Marchesan S
    Soft Matter; 2022 Mar; 18(11):2129-2136. PubMed ID: 35179536
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rheology and texture analysis of gelatin/dialdehyde starch hydrogel carriers for curcumin controlled release.
    Cui T; Wu Y; Ni C; Sun Y; Cheng J
    Carbohydr Polym; 2022 May; 283():119154. PubMed ID: 35153020
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Supramolecular Tuning of H
    Qian Y; Kaur K; Foster JC; Matson JB
    Biomacromolecules; 2019 Feb; 20(2):1077-1086. PubMed ID: 30676716
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sequence-Selected C
    Hu T; Xu Y; Xu G; Pan S
    J Agric Food Chem; 2022 Jun; 70(23):7148-7157. PubMed ID: 35657010
    [TBL] [Abstract][Full Text] [Related]  

  • 58. γ-Irradiated chitosan based injectable hydrogels for controlled release of drug (Montelukast sodium).
    Hafeez S; Islam A; Gull N; Ali A; Khan SM; Zia S; Anwar K; Khan SU; Jamil T
    Int J Biol Macromol; 2018 Jul; 114():890-897. PubMed ID: 29458102
    [TBL] [Abstract][Full Text] [Related]  

  • 59. pH-Responsive Peptide Supramolecular Hydrogels with Antibacterial Activity.
    Wan Y; Liu L; Yuan S; Sun J; Li Z
    Langmuir; 2017 Apr; 33(13):3234-3240. PubMed ID: 28282150
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tuning the Handedness: Role of Chiral Component in Peptide-Appended Bolaamphiphile-Based Coassembled Hydrogels.
    Biswas S; Das AK
    Langmuir; 2019 Feb; 35(6):2383-2391. PubMed ID: 30626180
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.