These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 36233126)
1. Model Study for Interaction of Sublethal Doses of Zinc Oxide Nanoparticles with Environmentally Beneficial Bacteria Matyszczuk K; Krzepiłko A Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36233126 [TBL] [Abstract][Full Text] [Related]
2. Susceptibility of Bacillus subtilis to Zinc Oxide Nanoparticles Treatment. Djearamane S; Sundaraji A; Eng PT; Liang SXT; Wong LS; Senthilkumar B Clin Ter; 2023; 174(1):61-66. PubMed ID: 36655646 [TBL] [Abstract][Full Text] [Related]
3. Production of indole-3-acetic acid via the indole-3-acetamide pathway in the plant-beneficial bacterium Pseudomonas chlororaphis O6 is inhibited by ZnO nanoparticles but enhanced by CuO nanoparticles. Dimkpa CO; Zeng J; McLean JE; Britt DW; Zhan J; Anderson AJ Appl Environ Microbiol; 2012 Mar; 78(5):1404-10. PubMed ID: 22210218 [TBL] [Abstract][Full Text] [Related]
4. Desertifilum sp. EAZ03 cell extract as a novel natural source for the biosynthesis of zinc oxide nanoparticles and antibacterial, anticancer and antibiofilm characteristics of synthesized zinc oxide nanoparticles. Ebadi M; Zolfaghari MR; Aghaei SS; Zargar M; Noghabi KA J Appl Microbiol; 2022 Jan; 132(1):221-236. PubMed ID: 34101961 [TBL] [Abstract][Full Text] [Related]
5. Antibacterial and antibiofilm efficacy of green synthesized ZnO nanoparticles using Saraca asoca leaves. Agrawal A; Sharma R; Sharma A; Gurjar KC; Kumar S; Chatterjee S; Pandey H; Awasthi K; Awasthi A Environ Sci Pollut Res Int; 2023 Aug; 30(36):86328-86337. PubMed ID: 37402918 [TBL] [Abstract][Full Text] [Related]
6. Evaluate the Effect of Zinc Oxide and Silver Nanoparticles on Biofilm and icaA Gene Expression in Methicillin-Resistant Staphylococcus aureus Isolated From Burn Wound Infection. Shakerimoghaddam A; Razavi D; Rahvar F; Khurshid M; Ostadkelayeh SM; Esmaeili SA; Khaledi A; Eshraghi M J Burn Care Res; 2020 Nov; 41(6):1253-1259. PubMed ID: 32479611 [TBL] [Abstract][Full Text] [Related]
7. Enhancement of the Bioactive Compound Content and Antibacterial Activities in Curcuma Longa Using Zinc Oxide Nanoparticles. Aldayel MF Molecules; 2023 Jun; 28(13):. PubMed ID: 37446597 [TBL] [Abstract][Full Text] [Related]
8. Bacillus thuringiensis coated zinc oxide nanoparticle and its biopesticidal effects on the pulse beetle, Callosobruchus maculatus. Malaikozhundan B; Vaseeharan B; Vijayakumar S; Thangaraj MP J Photochem Photobiol B; 2017 Sep; 174():306-314. PubMed ID: 28818776 [TBL] [Abstract][Full Text] [Related]
9. Mycogenic Synthesis of Extracellular Zinc Oxide Nanoparticles from Sumanth B; Lakshmeesha TR; Ansari MA; Alzohairy MA; Udayashankar AC; Shobha B; Niranjana SR; Srinivas C; Almatroudi A Int J Nanomedicine; 2020; 15():8519-8536. PubMed ID: 33173290 [TBL] [Abstract][Full Text] [Related]
10. Investigation of morphological and biochemical changes of zinc oxide nanoparticles induced toxicity against multi drug resistance bacteria. Asif N; Fatima S; Siddiqui T; Fatma T J Trace Elem Med Biol; 2022 Dec; 74():127069. PubMed ID: 36152464 [TBL] [Abstract][Full Text] [Related]
11. Low-dose zinc oxide nanoparticles trigger the growth and biofilm formation of Pseudomonas aeruginosa: a hormetic response. Al-Momani H; Aolymat I; Ibrahim L; Albalawi H; Al Balawi D; Albiss BA; Almasri M; Alghweiri S BMC Microbiol; 2024 Aug; 24(1):290. PubMed ID: 39095741 [TBL] [Abstract][Full Text] [Related]
13. Effective control of microbial spoilage in soybeans by water-soluble ZnO nanoparticles. Zhou R; Cui DJ; Zhao Q; Liu KK; Zhao WB; Liu Q; Ma RN; Jiao Z; Dong L; Shan CX Food Chem; 2022 Sep; 388():132994. PubMed ID: 35460964 [TBL] [Abstract][Full Text] [Related]
14. Isolation and characterization of a novel thermophile; Rehman S; Jermy BR; Akhtar S; Borgio JF; Abdul Azeez S; Ravinayagam V; Al Jindan R; Alsalem ZH; Buhameid A; Gani A Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):2072-2082. PubMed ID: 31126203 [TBL] [Abstract][Full Text] [Related]
15. Antibacterial and cytotoxic evaluation of copper and zinc oxide nanoparticles as a potential disinfectant material of connections in implant provisional abutments: An in-vitro study. Vergara-Llanos D; Koning T; Pavicic MF; Bello-Toledo H; Díaz-Gómez A; Jaramillo A; Melendrez-Castro M; Ehrenfeld P; Sánchez-Sanhueza G Arch Oral Biol; 2021 Feb; 122():105031. PubMed ID: 33412420 [TBL] [Abstract][Full Text] [Related]
16. ZnO nanoparticles induced biofilm formation in Klebsiella pneumoniae and Staphylococcus aureus at sub-inhibitory concentrations. K S; Nechikkadan S; Theresa M; Krishnankutty RE Folia Microbiol (Praha); 2024 Dec; 69(6):1175-1183. PubMed ID: 38564153 [TBL] [Abstract][Full Text] [Related]
18. Antibacterial Mechanisms of Zinc Oxide Nanoparticle against Bacterial Food Pathogens Resistant to Beta-Lactam Antibiotics. Krishnamoorthy R; Athinarayanan J; Periyasamy VS; Alshuniaber MA; Alshammari G; Hakeem MJ; Ahmed MA; Alshatwi AA Molecules; 2022 Apr; 27(8):. PubMed ID: 35458685 [TBL] [Abstract][Full Text] [Related]
19. Eco-friendly Mycogenic Synthesis of ZnO and CuO Nanoparticles for In Vitro Antibacterial, Antibiofilm, and Antifungal Applications. Mohamed AA; Abu-Elghait M; Ahmed NE; Salem SS Biol Trace Elem Res; 2021 Jul; 199(7):2788-2799. PubMed ID: 32895893 [TBL] [Abstract][Full Text] [Related]
20. Effect of ZnO nanoparticles on methicillin, vancomycin, linezolid resistance and biofilm formation in Staphylococcus aureus isolates. Abdelraheem WM; Khairy RMM; Zaki AI; Zaki SH Ann Clin Microbiol Antimicrob; 2021 Aug; 20(1):54. PubMed ID: 34419054 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]