These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
393 related articles for article (PubMed ID: 36233176)
41. Distepharinamide, a novel dimeric proaporphine alkaloid from Diploclisia glaucescens, inhibits the differentiation and proliferative expansion of CD4 Chen FY; Geng CA; Chou CK; Zheng JB; Yang Y; Wang YF; Li TZ; Li P; Chen JJ; Chen X Phytomedicine; 2022 Dec; 107():154482. PubMed ID: 36202057 [TBL] [Abstract][Full Text] [Related]
42. Quercetin protects mouse liver against triptolide-induced hepatic injury by restoring Th17/Treg balance through Tim-3 and TLR4-MyD88-NF-κB pathway. Wei CB; Tao K; Jiang R; Zhou LD; Zhang QH; Yuan CS Int Immunopharmacol; 2017 Dec; 53():73-82. PubMed ID: 29040945 [TBL] [Abstract][Full Text] [Related]
43. Pseudomonas aeruginosa outer membrane vesicles ameliorates lung ischemia-reperfusion injury by regulating the balance of regulatory T cells and Th17 cells through Tim-3 and TLR4/NF-κB pathway. Liu B; Ding F; Cao D; Liu J; Wang Y; Wu C Inflamm Res; 2021 Aug; 70(8):891-902. PubMed ID: 34223915 [TBL] [Abstract][Full Text] [Related]
44. Neutrophil cell surface receptors and their intracellular signal transduction pathways. Futosi K; Fodor S; Mócsai A Int Immunopharmacol; 2013 Nov; 17(3):638-50. PubMed ID: 23994464 [TBL] [Abstract][Full Text] [Related]
45. Reprint of Neutrophil cell surface receptors and their intracellular signal transduction pathways. Futosi K; Fodor S; Mócsai A Int Immunopharmacol; 2013 Dec; 17(4):1185-97. PubMed ID: 24263067 [TBL] [Abstract][Full Text] [Related]
46. The balance of intestinal Foxp3+ regulatory T cells and Th17 cells and its biological significance. Shen X; Du J; Guan W; Zhao Y Expert Rev Clin Immunol; 2014 Mar; 10(3):353-62. PubMed ID: 24483245 [TBL] [Abstract][Full Text] [Related]
47. Altered activation of AKT is required for the suppressive function of human CD4+CD25+ T regulatory cells. Crellin NK; Garcia RV; Levings MK Blood; 2007 Mar; 109(5):2014-22. PubMed ID: 17062729 [TBL] [Abstract][Full Text] [Related]
48. Naturally occurring regulatory T cells: recent insights in health and disease. Raimondi G; Turner MS; Thomson AW; Morel PA Crit Rev Immunol; 2007; 27(1):61-95. PubMed ID: 17430097 [TBL] [Abstract][Full Text] [Related]
49. The Functional Stability of FOXP3 and RORγt in Treg and Th17 and Their Therapeutic Applications. Ren J; Li B Adv Protein Chem Struct Biol; 2017; 107():155-189. PubMed ID: 28215223 [TBL] [Abstract][Full Text] [Related]
50. Decrease of CD4(+)FOXP3(+) T regulatory cells in the peripheral blood of human subjects undergoing a mental stressor. Freier E; Weber CS; Nowottne U; Horn C; Bartels K; Meyer S; Hildebrandt Y; Luetkens T; Cao Y; Pabst C; Muzzulini J; Schnee B; Brunner-Weinzierl MC; Marangolo M; Bokemeyer C; Deter HC; Atanackovic D Psychoneuroendocrinology; 2010 Jun; 35(5):663-73. PubMed ID: 20015595 [TBL] [Abstract][Full Text] [Related]
51. Metabolic Regulation of Stem Cells and Differentiation: A Forkhead Box O Transcription Factor Perspective. Ludikhuize MC; Rodríguez Colman MJ Antioxid Redox Signal; 2021 May; 34(13):1004-1024. PubMed ID: 32847377 [No Abstract] [Full Text] [Related]
52. CD4+CD25+ Treg derived from hepatocellular carcinoma mice inhibits tumor immunity. Chen X; Du Y; Huang Z Immunol Lett; 2012; 148(1):83-9. PubMed ID: 23000301 [TBL] [Abstract][Full Text] [Related]
53. Procyanidin dimer B2-mediated IRAK-M induction negatively regulates TLR4 signaling in macrophages. Sung NY; Yang MS; Song DS; Kim JK; Park JH; Song BS; Park SH; Lee JW; Park HJ; Kim JH; Byun EB; Byun EH Biochem Biophys Res Commun; 2013 Aug; 438(1):122-8. PubMed ID: 23872113 [TBL] [Abstract][Full Text] [Related]
54. Abnormal T regulatory cells (Tregs: FOXP3+, CTLA-4+), myeloid-derived suppressor cells (MDSCs: monocytic, granulocytic) and polarised T helper cell profiles (Th1, Th2, Th17) in women with large and locally advanced breast cancers undergoing neoadjuvant chemotherapy (NAC) and surgery: failure of abolition of abnormal treg profile with treatment and correlation of treg levels with pathological response to NAC. Verma C; Eremin JM; Robins A; Bennett AJ; Cowley GP; El-Sheemy MA; Jibril JA; Eremin O J Transl Med; 2013 Jan; 11():16. PubMed ID: 23320561 [TBL] [Abstract][Full Text] [Related]
55. Asparagine reduces the mRNA expression of muscle atrophy markers via regulating protein kinase B (Akt), AMP-activated protein kinase α, toll-like receptor 4 and nucleotide-binding oligomerisation domain protein signalling in weaning piglets after lipopolysaccharide challenge. Wang X; Liu Y; Wang S; Pi D; Leng W; Zhu H; Zhang J; Shi H; Li S; Lin X; Odle J Br J Nutr; 2016 Oct; 116(7):1188-1198. PubMed ID: 27572423 [TBL] [Abstract][Full Text] [Related]
56. FOXO transcription factors: their clinical significance and regulation. Wang Y; Zhou Y; Graves DT Biomed Res Int; 2014; 2014():925350. PubMed ID: 24864265 [TBL] [Abstract][Full Text] [Related]
58. Cooperation of liver cells in health and disease. Kmieć Z Adv Anat Embryol Cell Biol; 2001; 161():III-XIII, 1-151. PubMed ID: 11729749 [TBL] [Abstract][Full Text] [Related]
59. αMSH inhibits adipose inflammation via reducing FoxOs transcription and blocking Akt/JNK pathway in mice. Liu G; Li M; Saeed M; Xu Y; Ren Q; Sun C Oncotarget; 2017 Jul; 8(29):47642-47654. PubMed ID: 28514752 [TBL] [Abstract][Full Text] [Related]
60. IL-35 promotes CD4+Foxp3+ Tregs and inhibits atherosclerosis via maintaining CCR5-amplified Treg-suppressive mechanisms. Shao Y; Yang WY; Saaoud F; Drummer C; Sun Y; Xu K; Lu Y; Shan H; Shevach EM; Jiang X; Wang H; Yang X JCI Insight; 2021 Oct; 6(19):. PubMed ID: 34622804 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]