These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 36233272)

  • 1. Gene Networks Involved in Plant Heat Stress Response and Tolerance.
    Huang LZ; Zhou M; Ding YF; Zhu C
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36233272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant Responses to Heat Stress: Physiology, Transcription, Noncoding RNAs, and Epigenetics.
    Zhao J; Lu Z; Wang L; Jin B
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33374376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review of changes at the phenotypic, physiological, biochemical, and molecular levels of plants due to high temperatures.
    Wang Q; Wu Y; Wu W; Lyu L; Li W
    Planta; 2024 Feb; 259(3):57. PubMed ID: 38307982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional Regulatory Network of Plant Heat Stress Response.
    Ohama N; Sato H; Shinozaki K; Yamaguchi-Shinozaki K
    Trends Plant Sci; 2017 Jan; 22(1):53-65. PubMed ID: 27666516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Progress in Research on the Mechanisms Underlying Chloroplast-Involved Heat Tolerance in Plants.
    Zeng C; Jia T; Gu T; Su J; Hu X
    Genes (Basel); 2021 Aug; 12(9):. PubMed ID: 34573325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MicroRNAs as Important Regulators of Heat Stress Responses in Plants.
    Ding Y; Huang L; Jiang Q; Zhu C
    J Agric Food Chem; 2020 Oct; 68(41):11320-11326. PubMed ID: 32870674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analyzing the regulatory role of heat shock transcription factors in plant heat stress tolerance: a brief appraisal.
    Haider S; Raza A; Iqbal J; Shaukat M; Mahmood T
    Mol Biol Rep; 2022 Jun; 49(6):5771-5785. PubMed ID: 35182323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plant hormone-mediated regulation of stress responses.
    Verma V; Ravindran P; Kumar PP
    BMC Plant Biol; 2016 Apr; 16():86. PubMed ID: 27079791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular insights into sensing, regulation and improving of heat tolerance in plants.
    Saini N; Nikalje GC; Zargar SM; Suprasanna P
    Plant Cell Rep; 2022 Mar; 41(3):799-813. PubMed ID: 34676458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat or cold priming-induced cross-tolerance to abiotic stresses in plants: key regulators and possible mechanisms.
    Hossain MA; Li ZG; Hoque TS; Burritt DJ; Fujita M; Munné-Bosch S
    Protoplasma; 2018 Jan; 255(1):399-412. PubMed ID: 28776104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generating high temperature tolerant transgenic plants: Achievements and challenges.
    Grover A; Mittal D; Negi M; Lavania D
    Plant Sci; 2013 May; 205-206():38-47. PubMed ID: 23498861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Melatonin Ameliorates Thermotolerance in Soybean Seedling through Balancing Redox Homeostasis and Modulating Antioxidant Defense, Phytohormones and Polyamines Biosynthesis.
    Imran M; Aaqil Khan M; Shahzad R; Bilal S; Khan M; Yun BW; Khan AL; Lee IJ
    Molecules; 2021 Aug; 26(17):. PubMed ID: 34500550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Citric Acid-Mediated Abiotic Stress Tolerance in Plants.
    Tahjib-Ul-Arif M; Zahan MI; Karim MM; Imran S; Hunter CT; Islam MS; Mia MA; Hannan MA; Rhaman MS; Hossain MA; Brestic M; Skalicky M; Murata Y
    Int J Mol Sci; 2021 Jul; 22(13):. PubMed ID: 34281289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulatory role of microRNAs (miRNAs) in the recent development of abiotic stress tolerance of plants.
    Begum Y
    Gene; 2022 May; 821():146283. PubMed ID: 35143944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ethylene involvement in the regulation of heat stress tolerance in plants.
    Poór P; Nawaz K; Gupta R; Ashfaque F; Khan MIR
    Plant Cell Rep; 2022 Mar; 41(3):675-698. PubMed ID: 33713206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and Functional Dynamics of Dehydrins: A Plant Protector Protein under Abiotic Stress.
    Yu Z; Wang X; Zhang L
    Int J Mol Sci; 2018 Oct; 19(11):. PubMed ID: 30384475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced osmotic adjustment, antioxidant defense, and photosynthesis efficiency under drought and heat stress of transgenic cowpea overexpressing an engineered DREB transcription factor.
    Kumar S; Muthuvel J; Sadhukhan A; Kobayashi Y; Koyama H; Sahoo L
    Plant Physiol Biochem; 2022 Dec; 193():1-13. PubMed ID: 36306675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Knockdown of CaHSP60-6 confers enhanced sensitivity to heat stress in pepper (Capsicum annuum L.).
    Haq SU; Khan A; Ali M; Gai WX; Zhang HX; Yu QH; Yang SB; Wei AM; Gong ZH
    Planta; 2019 Dec; 250(6):2127-2145. PubMed ID: 31606756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mechanisms of the plant heat stress response.
    Qu AL; Ding YF; Jiang Q; Zhu C
    Biochem Biophys Res Commun; 2013 Mar; 432(2):203-7. PubMed ID: 23395681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Research advances in function and regulation mechanisms of plant small heat shock proteins (sHSPs) under environmental stresses.
    Wu J; Gao T; Hu J; Zhao L; Yu C; Ma F
    Sci Total Environ; 2022 Jun; 825():154054. PubMed ID: 35202686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.