These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 36233938)

  • 1. Influence of Hydrogen on the Fracture Resistance of Pre-Strained Steam Generator Steel 22K.
    Dutkiewicz M; Hembara O; Ivanytskyi Y; Hvozdiuk M; Chepil O; Hrynenko M; Hembara N
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36233938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A New Energy Approach to Predicting Fracture Resistance in Metals.
    Dutkiewicz M; Hembara O; Chepil O; Hrynenko M; Hembara T
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Warm Pre-Strain: Strengthening the Metastable 304L Austenitic Stainless Steel without Compromising Its Hydrogen Embrittlement Resistance.
    Wang Y; Zhou Z; Wu W; Gong J
    Materials (Basel); 2017 Nov; 10(11):. PubMed ID: 29160830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the Influence of Pre-Charged Hydrogen on Fracture Toughness of As-Received 2.25Cr1Mo0.25V Steel and Weld.
    Song Y; Chai M; Yang B; Han Z; Ai S; Li Y
    Materials (Basel); 2018 Jun; 11(7):. PubMed ID: 29937529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen Embrittlement Behavior of 18Ni 300 Maraging Steel Produced by Selective Laser Melting.
    Kwon YJ; Casati R; Coduri M; Vedani M; Lee CS
    Materials (Basel); 2019 Jul; 12(15):. PubMed ID: 31349538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen embrittlement property of a 1700-MPa-class ultrahigh-strength tempered martensitic steel.
    Li S; Akiyama E; Yuuji K; Tsuzaki K; Uno N; Zhang B
    Sci Technol Adv Mater; 2010 Apr; 11(2):025005. PubMed ID: 27877333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Energy-Based Method for Lifetime Assessment on High-Strength-Steel Welded Joints under Different Pre-Strain Levels.
    Mi C; Huang Z; Wang H; Zhang D; Xiong T; Jian H; Tang J; Yu J
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of Hydrogen Embrittlement Susceptibility and Fracture Toughness Drop after in situ Hydrogen Cathodic Charging for an X65 Pipeline Steel.
    Kyriakopoulou HP; Karmiris-Obratański P; Tazedakis AS; Daniolos NM; Dourdounis EC; Manolakos DE; Pantelis D
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32325971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental Investigation of the Effect of Hydrogen on Fracture Toughness of 2.25Cr-1Mo-0.25V Steel and Welds after Annealing.
    Song Y; Chai M; Wu W; Liu Y; Qin M; Cheng G
    Materials (Basel); 2018 Mar; 11(4):. PubMed ID: 29584678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen Embrittlement of the Additively Manufactured High-Strength X3NiCoMoTi 18-9-5 Maraging Steel.
    Strakosova A; Roudnická M; Ekrt O; Vojtěch D; Michalcová A
    Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study on the effects of Cr, V, and Mo carbides for hydrogen-embrittlement resistance of tempered martensitic steel.
    Lee J; Lee T; Mun DJ; Bae CM; Lee CS
    Sci Rep; 2019 Mar; 9(1):5219. PubMed ID: 30914723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen-Assisted Brittle Fracture Behavior of Low Alloy 30CrMo Steel Based on the Combination of Experimental and Numerical Analyses.
    Li Y; Zhang K; Lu D; Zeng B
    Materials (Basel); 2021 Jul; 14(13):. PubMed ID: 34279281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Hydrogen Embrittlement Susceptibility of Different Types of Advanced High-Strength Steels.
    Cho S; Kim GI; Ko SJ; Yoo JS; Jung YS; Yoo YH; Kim JG
    Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Hot Stamping and Tempering on Hydrogen Embrittlement of a Low-Carbon Boron-Alloyed Steel.
    Zhang Y; Hui W; Zhao X; Wang C; Dong H
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30544704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen Embrittlement Evaluation of Micro Alloyed Steels by Means of
    Cabrini M; Sinigaglia E; Spinelli C; Tarenzi M; Testa C; Bolzoni FM
    Materials (Basel); 2019 Jun; 12(11):. PubMed ID: 31174341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alloy and composition dependence of hydrogen embrittlement susceptibility in high-strength steel fasteners.
    Brahimi SV; Yue S; Sriraman KR
    Philos Trans A Math Phys Eng Sci; 2017 Jul; 375(2098):. PubMed ID: 28607186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen Concentration Distribution in 2.25Cr-1Mo-0.25V Steel under the Electrochemical Hydrogen Charging and Its Influence on the Mechanical Properties.
    Yin C; Chen J; Ye D; Xu Z; Ge J; Zhou H
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32422989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An SEM compatible plasma cell for in situ studies of hydrogen-material interaction.
    Massone A; Manhard A; Jacob W; Drexler A; Ecker W; Hohenwarter A; Wurster S; Kiener D
    Rev Sci Instrum; 2020 Apr; 91(4):043705. PubMed ID: 32357725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on Temper Embrittlement and Hydrogen Embrittlement of a Hydrogenation Reactor by Small Punch Test.
    Guan K; Szpunar JA; Matocha K; Wang D
    Materials (Basel); 2017 Jun; 10(6):. PubMed ID: 28773029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Pre-Strain on Static and Fatigue Properties of S420M Steel.
    Mroziński S; Lipski A; Piotrowski M; Egner H
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.