These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 36234177)

  • 1. Evaluation of Thermal Fatigue Life and Crack Morphology in Brake Discs of Low-Alloy Steel for High-Speed Trains.
    Wang J; Chen Y; Zuo L; Zhao H; Ma N
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatigue life prediction of brake discs for high-speed trains via thermal stress.
    Luo J; Liu J; You Z; Liu X
    Sci Prog; 2022; 105(2):368504221102742. PubMed ID: 35603887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermo-Mechanical Coupling Analyses for Al Alloy Brake Discs with Al
    Jiang L; Jiang Y; Yu L; Yang H; Li Z; Ding Y
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31569630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of Precipitate Microstructure Affecting Fatigue Behavior of 7020 Aluminum Alloy.
    Shan Z; Liu S; Ye L; Li Y; He C; Chen J; Tang J; Deng Y; Zhang X
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32707847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crack propagation analysis and fatigue life assessment of high-strength bolts based on fracture mechanics.
    Zhang P; Li J; Zhao Y; Li J
    Sci Rep; 2023 Sep; 13(1):14567. PubMed ID: 37667025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical simulation and experimental verification of fatigue crack propagation in high-strength bolts based on fracture mechanics.
    Zhang P; Li J; Zhao Y; Li J
    Sci Prog; 2023; 106(4):368504231211660. PubMed ID: 38058131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the Depth of Surface Cracks in Brake Disc.
    Sawczuk W; Jüngst M; Ulbrich D; Kowalczyk J
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Microstructures and Fatigue Properties for Dual-Phase Pipeline Steels by Gleeble Simulation of Heat-Affected Zone.
    Zhao Z; Xu P; Cheng H; Miao J; Xiao F
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31226851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Mechanism of Creep during Crack Propagation of a Superalloy under Fatigue-Creep-Environment Interactions.
    Wang M; Du J; Deng Q
    Materials (Basel); 2020 Oct; 13(19):. PubMed ID: 33020419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of Fatigue Crack Initiation and the Propagation Mechanism Induced by Pores in a Powder Metallurgy Nickel-Based FGH96 Superalloy.
    Yi S; Zhang S; Wang D; Mao J; Zhang Z; Hu D
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatigue Crack Propagation Prediction of Corroded Steel Plate Strengthened with Carbon Fiber Reinforced Polymer (CFRP) Plates.
    Li A; Wang L; Xu S
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on Short Fatigue Crack Behaviour of LZ50 Steel Under Non-Proportional Loading.
    Yang B; Liao Z; Xiao S; Yang G; Zhu T; Zhang X
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31936422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Rod-like Structure on Fatigue Life, Short Surface Crack Initiation and Growth Characteristics of Extruded Aluminum Alloy A2024 (Analysis via Modified Linear Elastic Fracture Mechanics).
    Masuda K; Ishihara S; Shibata H; Oguma N
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of Fatigue Crack Initiation of 7075 Aluminum Alloy by Crystal Plasticity Simulation.
    Shiraiwa T; Briffod F; Enoki M
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Approach for Predicting the Low-Cycle-Fatigue Crack Initiation Life of Ultrafine-Grained Aluminum Alloy Considering Inhomogeneous Deformation and Microscale Multiaxial Strain.
    Sun T; Qin L; Xie Y; Zheng Z; Xie C; Huang Z
    Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Multi-Holes on Fatigue Behaviors of Cast Magnesium Alloys Based on In-Situ Scanning Electron Microscope Technology.
    Wang XS; Tan CH; Ma J; Zhu XD; Wang QY
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30216982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frictional Wear and Thermal Fatigue Properties of Die Steel after Ultrasound-Assisted Alloying.
    Hu C; Wei Y; Ji X; Liu Y
    Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatigue Property and Small Crack Propagation Mechanism of MIG Welding Joint of 6005A-T6 Aluminum Alloy.
    Peng Z; Yang S; Wang Z; Gao Z
    Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on the Wear Performance of Brake Materials for High-Speed Railway with Intermittent Braking under Low-Temperature Environment Conditions.
    Ma L; Ding S; Zhang C; Zhang M; Shi H
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental Study on the Fatigue Crack Propagation Rate of 925A Steel for a Ship Rudder System.
    Yu L; Guo W; Cao C; Li M; Wu Z; Wang T; Chen H; Pan X
    Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.