These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 36234382)

  • 1. Modeling of Electrical Conductivity for Polymer-Carbon Nanofiber Systems.
    Khalil Arjmandi S; Khademzadeh Yeganeh J; Zare Y; Rhee KY
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of Kovacs model for electrical conductivity of carbon nanofiber-polymer systems.
    Arjmandi SK; Khademzadeh Yeganeh J; Zare Y; Rhee KY
    Sci Rep; 2023 Jan; 13(1):7. PubMed ID: 36593230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculation of the Electrical Conductivity of Polymer Nanocomposites Assuming the Interphase Layer Surrounding Carbon Nanotubes.
    Zare Y; Rhee KY
    Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32053949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of Percolation Threshold, Tunneling Distance, and Conductivity for Carbon Nanotube (CNT)-Reinforced Nanocomposites Assuming Effective CNT Concentration.
    Zare Y; Rhee KY
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31948024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the effect of interfacial conductivity between polymer matrix and carbon nanotubes on the electrical conductivity of nanocomposites.
    Zare Y; Rhee KY
    RSC Adv; 2019 Dec; 10(1):424-433. PubMed ID: 35492511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of contact resistance on the electrical conductivity of polymer graphene nanocomposites to optimize the biosensors detecting breast cancer cells.
    Zare Y; Rhee KY
    Sci Rep; 2022 Mar; 12(1):5406. PubMed ID: 35354877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of electrical conductivity for polymer silver nanowires systems.
    Mohammadpour-Haratbar A; Zare Y; Rhee KY
    Sci Rep; 2023 Jan; 13(1):5. PubMed ID: 36593261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progressing of a power model for electrical conductivity of graphene-based composites.
    Zare Y; Rhee KY; Park SJ
    Sci Rep; 2023 Jan; 13(1):1596. PubMed ID: 36709238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon Nanofibers and Their Composites: A Review of Synthesizing, Properties and Applications.
    Feng L; Xie N; Zhong J
    Materials (Basel); 2014 May; 7(5):3919-3945. PubMed ID: 28788657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct current conductivity of carbon nanofiber-based conductive polymer composites: effects of temperature and electric field.
    He LX; Tjong SC
    J Nanosci Nanotechnol; 2011 May; 11(5):3916-21. PubMed ID: 21780386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alternating current electrical conductivity of high-density polyethylene-carbon nanofiber composites.
    He LX; Tjong SC
    Eur Phys J E Soft Matter; 2010 Jul; 32(3):249-54. PubMed ID: 20661619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advancement of the Power-Law Model and Its Percolation Exponent for the Electrical Conductivity of a Graphene-Containing System as a Component in the Biosensing of Breast Cancer.
    Zare Y; Rhee KY; Park SJ
    Polymers (Basel); 2022 Jul; 14(15):. PubMed ID: 35956571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting the electrical conductivity in polymer carbon nanotube nanocomposites based on the volume fractions and resistances of the nanoparticle, interphase, and tunneling regions in conductive networks.
    Liu Z; Peng W; Zare Y; Hui D; Rhee KY
    RSC Adv; 2018 May; 8(34):19001-19010. PubMed ID: 35539634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geometrical and physical effects of nanofillers on percolation and electrical conductivity of polymer carbon-based nanocomposites: a general micro-mechanical model.
    Payandehpeyman J; Mazaheri M
    Soft Matter; 2023 Jan; 19(3):530-539. PubMed ID: 36541407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and modification of conventional Ouali model for tensile modulus of polymer/carbon nanotubes nanocomposites assuming the roles of dispersed and networked nanoparticles and surrounding interphases.
    Zare Y; Rhee KY
    J Colloid Interface Sci; 2017 Nov; 506():283-290. PubMed ID: 28738279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational Micromechanics Investigation of Percolation and Effective Electro-Mechanical Properties of Carbon Nanotube/Polymer Nanocomposites using Stochastically Generated Realizations: Effects of Orientation and Waviness.
    Talamadupula KK; Seidel G
    Polymers (Basel); 2022 Nov; 14(23):. PubMed ID: 36501489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring Damage Propagation in Glass Fiber Composites Using Carbon Nanofibers.
    Al-Sabagh A; Taha E; Kandil U; Nasr GA; Reda Taha M
    Nanomaterials (Basel); 2016 Sep; 6(9):. PubMed ID: 28335298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of Electrical Conductivity for Graphene-Filled Products Assuming Interphase, Tunneling Effect, and Filler Agglomeration Optimizing Breast Cancer Biosensors.
    Zare Y; Rhee KY
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellulose Nanofiber/Carbon Nanotube Conductive Nano-Network as a Reinforcement Template for Polydimethylsiloxane Nanocomposite.
    Chen C; Bu X; Feng Q; Li D
    Polymers (Basel); 2018 Sep; 10(9):. PubMed ID: 30960925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An innovative model for conductivity of graphene-based system by networked nano-sheets, interphase and tunneling zone.
    Zare Y; Rhee KY
    Sci Rep; 2022 Sep; 12(1):15179. PubMed ID: 36071132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.