BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 36234462)

  • 1. Tensile and Viscoelastic Behavior in Nacre-Inspired Nanocomposites: A Coarse-Grained Molecular Dynamics Study.
    Singh PP; Ranganathan R
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical and Viscoelastic Properties of Stacked and Grafted Graphene/Graphene Oxide-Polyethylene Nanocomposites: A Coarse-Grained Molecular Dynamics Study.
    Singh PP; Ranganathan R
    ACS Omega; 2024 Feb; 9(8):9063-9075. PubMed ID: 38434848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Mechanical Behaviors of Nacre-Inspired Graphene-Polymer Nanocomposites Depending on Internal Nanostructures.
    Chiang CC; Breslin J; Weeks S; Meng Z
    Extreme Mech Lett; 2021 Nov; 49():. PubMed ID: 34541269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orientation-dependent micromechanical behavior of nacre: In situ TEM experiments and finite element simulations.
    Peng XL; Lee S; Wilmers J; Oh SH; Bargmann S
    Acta Biomater; 2022 Jul; 147():120-128. PubMed ID: 35609803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging Inelastic Fracture Processes in Biomimetic Nanocomposites and Nacre by Laser Speckle for Better Toughness.
    Verho T; Karppinen P; Gröschel AH; Ikkala O
    Adv Sci (Weinh); 2018 Jan; 5(1):1700635. PubMed ID: 29375979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoasperity: structure origin of nacre-inspired nanocomposites.
    Xia S; Wang Z; Chen H; Fu W; Wang J; Li Z; Jiang L
    ACS Nano; 2015 Feb; 9(2):2167-72. PubMed ID: 25625593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the Mechanical and Viscoelastic Properties of Graphene Reinforced Polycarbonate Nanocomposites Using Coarse-Grained Molecular Dynamics Simulations.
    Yang J; Custer D; Chun Chiang C; Meng Z; Yao XH
    Comput Mater Sci; 2021 Apr; 191():. PubMed ID: 33737768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nacre-like hybrid films: Structure, properties, and the effect of relative humidity.
    Abba MT; Hunger PM; Kalidindi SR; Wegst UGK
    J Mech Behav Biomed Mater; 2015 Mar; 55():140-150. PubMed ID: 26590907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On flaw tolerance of nacre: a theoretical study.
    Shao Y; Zhao HP; Feng XQ
    J R Soc Interface; 2014 Mar; 11(92):20131016. PubMed ID: 24402917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nacre-inspired nanocomposites produced using layer-by-layer assembly: Design strategies and biomedical applications.
    Rodrigues JR; Alves NM; Mano JF
    Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():1263-1273. PubMed ID: 28482494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 25th anniversary article: Artificial carbonate nanocrystals and layered structural nanocomposites inspired by nacre: synthesis, fabrication and applications.
    Yao HB; Ge J; Mao LB; Yan YX; Yu SH
    Adv Mater; 2014 Jan; 26(1):163-87. PubMed ID: 24338814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and mechanical properties of biomimetic nacre-like ceramic/polymer composites for chairside CAD/CAM dental restorations.
    Algharaibeh S; Wan H; Al-Fodeh R; Ireland AJ; Zhang D; Su B
    Dent Mater; 2022 Jan; 38(1):121-132. PubMed ID: 34836698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unraveling the effects of geometrical parameters on dynamic impact responses of graphene reinforced polymer nanocomposites using coarse-grained molecular dynamics simulations.
    Cui J; Zeng F; Wei D; Wang Y
    Phys Chem Chem Phys; 2024 Jul; ():. PubMed ID: 38962897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nacre-like materials using a simple doctor blading technique: Fabrication, testing and modeling.
    Mirkhalaf M; Barthelat F
    J Mech Behav Biomed Mater; 2016 Mar; 56():23-33. PubMed ID: 26655459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nacre-like composites with superior specific damping performance.
    Woigk W; Poloni E; Grossman M; Bouville F; Masania K; Studart AR
    Proc Natl Acad Sci U S A; 2022 Aug; 119(31):e2118868119. PubMed ID: 35878024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinspired Hierarchical Alumina-Graphene Oxide-Poly(vinyl alcohol) Artificial Nacre with Optimized Strength and Toughness.
    Wang J; Qiao J; Wang J; Zhu Y; Jiang L
    ACS Appl Mater Interfaces; 2015 May; 7(17):9281-6. PubMed ID: 25867752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of Viscoelastic Properties of Graphene Foams Using Dynamic Mechanical Analysis and Coarse-Grained Molecular Dynamics Simulations.
    Liu S; Lyu M; Yang C; Jiang M; Wang C
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel method for a multi-level hierarchical composite with brick-and-mortar structure.
    Brandt K; Wolff MF; Salikov V; Heinrich S; Schneider GA
    Sci Rep; 2013; 3():2322. PubMed ID: 23900554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tough and strong bioinspired nanocomposites with interfacial cross-links.
    Liu N; Zeng X; Pidaparti R; Wang X
    Nanoscale; 2016 Nov; 8(43):18531-18540. PubMed ID: 27782267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Layered nanocomposites inspired by the structure and mechanical properties of nacre.
    Wang J; Cheng Q; Tang Z
    Chem Soc Rev; 2012 Feb; 41(3):1111-29. PubMed ID: 21959863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.