These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 36234496)

  • 1. Effect of Hydrophobic Nano-SiO
    Xing L; Xia T; Zhang Q
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of a Flexible Superhydrophobic Surface and Its Wetting Mechanism Based on Fractal Theory.
    Jiang G; Hu J; Chen L
    Langmuir; 2020 Jul; 36(29):8435-8443. PubMed ID: 32640799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct observation of wetting behavior of water drops on single micro-scale roughness surfaces of rose petal effect.
    Lin HP; Chen LJ
    J Colloid Interface Sci; 2021 Dec; 603():539-549. PubMed ID: 34216950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust Cassie state of wetting in transparent superhydrophobic coatings.
    Tuvshindorj U; Yildirim A; Ozturk FE; Bayindir M
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9680-8. PubMed ID: 24823960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition.
    Zhang K; Li Z; Maxey M; Chen S; Karniadakis GE
    Langmuir; 2019 Feb; 35(6):2431-2442. PubMed ID: 30640480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A strategy for preparing controllable, superhydrophobic, strongly sticky surfaces using SiO
    Kim SH; Kang HS; Sohn EH; Chang BJ; Park IJ; Lee SG
    RSC Adv; 2021 Jul; 11(38):23631-23636. PubMed ID: 35479804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Freezing-Melting Mediated Dewetting Transition for Droplets on Superhydrophobic Surfaces with Condensation.
    Cui J; Wang T; Che Z
    Langmuir; 2024 Jul; 40(28):14685-14696. PubMed ID: 38970799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water droplet motion control on superhydrophobic surfaces: exploiting the Wenzel-to-Cassie transition.
    Liu G; Fu L; Rode AV; Craig VS
    Langmuir; 2011 Mar; 27(6):2595-600. PubMed ID: 21322574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wrinkled, dual-scale structures of diamond-like carbon (DLC) for superhydrophobicity.
    Rahmawan Y; Moon MW; Kim KS; Lee KR; Suh KY
    Langmuir; 2010 Jan; 26(1):484-91. PubMed ID: 19810723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intermediate States of Wetting on Hierarchical Superhydrophobic Surfaces.
    Rofman B; Dehe S; Frumkin V; Hardt S; Bercovici M
    Langmuir; 2020 May; 36(20):5517-5523. PubMed ID: 32337996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces.
    Erbil HY; Cansoy CE
    Langmuir; 2009 Dec; 25(24):14135-45. PubMed ID: 19630435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of deposition parameters on the wettability and microstructure of superhydrophobic films with hierarchical micro-nano structures.
    Basu BJ; Manasa J
    J Colloid Interface Sci; 2011 Nov; 363(2):655-62. PubMed ID: 21864844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Challenge of Superhydrophobicity: Environmentally Facilitated Cassie-Wenzel Transitions and Structural Design.
    Zhong X; Xie S; Guo Z
    Adv Sci (Weinh); 2024 Mar; 11(10):e2305961. PubMed ID: 38145324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanostructures in superhydrophobic Ti6Al4V hierarchical surfaces control wetting state transitions.
    Shen Y; Tao J; Tao H; Chen S; Pan L; Wang T
    Soft Matter; 2015 May; 11(19):3806-11. PubMed ID: 25855128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How to Achieve a Monostable Cassie State on a Micropillar-Arrayed Superhydrophobic Surface.
    Huang L; Yao Y; Peng Z; Zhang B; Chen S
    J Phys Chem B; 2021 Jan; 125(3):883-894. PubMed ID: 33459010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoresponsive superhydrophobic surfaces for effective wetting control.
    Pan S; Guo R; Xu W
    Soft Matter; 2014 Dec; 10(45):9187-92. PubMed ID: 25322263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two types of Cassie-to-Wenzel wetting transitions on superhydrophobic surfaces during drop impact.
    Lee C; Nam Y; Lastakowski H; Hur JI; Shin S; Biance AL; Pirat C; Kim CJ; Ybert C
    Soft Matter; 2015 Jun; 11(23):4592-9. PubMed ID: 25959867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wetting properties of silicon films from alkyl-passivated particles produced by mechanochemical synthesis.
    Hallmann S; Fink MJ; Mitchell BS
    J Colloid Interface Sci; 2010 Aug; 348(2):634-41. PubMed ID: 20580764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superhydrophobic composite films produced on various substrates.
    Manoudis PN; Karapanagiotis I; Tsakalof A; Zuburtikudis I; Panayiotou C
    Langmuir; 2008 Oct; 24(19):11225-32. PubMed ID: 18720965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.