These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 36234542)
1. Vapour-Phase Selective Hydrogenation of γ-Valerolactone to 2-Methyltetrahydrofuran Biofuel over Silica-Supported Copper Catalysts. Pothu R; Challa P; Rajesh R; Boddula R; Balaga R; Balla P; Perugopu V; Radwan AB; Abdullah AM; Al-Qahtani N Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234542 [TBL] [Abstract][Full Text] [Related]
2. Continuous hydrogenation of ethyl levulinate to γ-valerolactone and 2-methyl tetrahydrofuran over alumina doped Cu/SiO2 catalyst: the potential of commercialization. Zheng J; Zhu J; Xu X; Wang W; Li J; Zhao Y; Tang K; Song Q; Qi X; Kong D; Tang Y Sci Rep; 2016 Jul; 6():28898. PubMed ID: 27377401 [TBL] [Abstract][Full Text] [Related]
3. Hydrodeoxygenation of Levulinic Acid to γ-Valerolactone over Mesoporous Silica-Supported Cu-Ni Composite Catalysts. Popova M; Trendafilova I; Oykova M; Mitrev Y; Shestakova P; Mihályi MR; Szegedi Á Molecules; 2022 Aug; 27(17):. PubMed ID: 36080151 [TBL] [Abstract][Full Text] [Related]
5. Conversion of levulinic acid to γ-valerolactone over Ru/Al Wang R; Chen L; Zhang X; Zhang Q; Li Y; Wang C; Ma L RSC Adv; 2018 Dec; 8(71):40989-40995. PubMed ID: 35557899 [TBL] [Abstract][Full Text] [Related]
6. Supported cobalt catalysts for the selective hydrogenation of ethyl levulinate to various chemicals. Cen Y; Zhu S; Guo J; Chai J; Jiao W; Wang J; Fan W RSC Adv; 2018 Feb; 8(17):9152-9160. PubMed ID: 35541863 [TBL] [Abstract][Full Text] [Related]
7. One-Pot 2-Methyltetrahydrofuran Production from Levulinic Acid in Green Solvents Using Ni-Cu/Al2 O3 Catalysts. Obregón I; Gandarias I; Miletić N; Ocio A; Arias PL ChemSusChem; 2015 Oct; 8(20):3483-8. PubMed ID: 26350168 [TBL] [Abstract][Full Text] [Related]
8. The Role of the Hydrogen Source on the Selective Production of γ-Valerolactone and 2-Methyltetrahydrofuran from Levulinic Acid. Obregón I; Gandarias I; Al-Shaal MG; Mevissen C; Arias PL; Palkovits R ChemSusChem; 2016 Sep; 9(17):2488-95. PubMed ID: 27483194 [TBL] [Abstract][Full Text] [Related]
9. Catalytic Transfer Hydrogenation of Furfural to 2-Methylfuran and 2-Methyltetrahydrofuran over Bimetallic Copper-Palladium Catalysts. Chang X; Liu AF; Cai B; Luo JY; Pan H; Huang YB ChemSusChem; 2016 Dec; 9(23):3330-3337. PubMed ID: 27863073 [TBL] [Abstract][Full Text] [Related]
10. Highly efficient selective hydrogenation of levulinic acid to γ-valerolactone over Cu-Re/TiO Liu Y; Liu K; Zhang M; Zhang K; Ma J; Xiao S; Wei Z; Deng S RSC Adv; 2021 Dec; 12(1):602-610. PubMed ID: 35424528 [TBL] [Abstract][Full Text] [Related]
11. γ-Valerolactone Production from Levulinic Acid Hydrogenation Using Ni Supported Nanoparticles: Influence of Tungsten Loading and pH of Synthesis. Córdova-Pérez GE; Cortez-Elizalde J; Silahua-Pavón AA; Cervantes-Uribe A; Arévalo-Pérez JC; Cordero-Garcia A; de Los Monteros AEE; Espinosa-González CG; Godavarthi S; Ortiz-Chi F; Guerra-Que Z; Torres-Torres JG Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745357 [TBL] [Abstract][Full Text] [Related]
12. Enhanced Hydrogenation of Levulinic Acid over Ordered Mesoporous Alumina-Supported Catalysts: Elucidating the Effect of Fabrication Strategy. Raguindin RQ; Desalegn BZ; Vishwanath H; Gebresillase MN; Seo JG ChemSusChem; 2022 Mar; 15(5):e202102662. PubMed ID: 34997688 [TBL] [Abstract][Full Text] [Related]
13. Recent Advances in Ruthenium-Catalyzed Hydrogenation Reactions of Renewable Biomass-Derived Levulinic Acid in Aqueous Media. Seretis A; Diamantopoulou P; Thanou I; Tzevelekidis P; Fakas C; Lilas P; Papadogianakis G Front Chem; 2020; 8():221. PubMed ID: 32373576 [TBL] [Abstract][Full Text] [Related]
14. Noble Metal-Free Hierarchical ZrY Zeolite Efficient for Hydrogenation of Biomass-Derived Levulinic Acid. Hu D; Xu H; Wu Z; Zhang M; Zhao Z; Wang Y; Yan K Front Chem; 2021; 9():725175. PubMed ID: 34712649 [TBL] [Abstract][Full Text] [Related]
15. Selective aqueous-phase hydrogenation of furfural to cyclopentanol over Ni-based CNT catalysts. Xia H; Li J; Zhao J; Zhou M; Jiang J Environ Technol; 2023 May; ():1-10. PubMed ID: 37129277 [TBL] [Abstract][Full Text] [Related]
16. Homogeneous Catalyzed Reactions of Levulinic Acid: To γ-Valerolactone and Beyond. Omoruyi U; Page S; Hallett J; Miller PW ChemSusChem; 2016 Aug; 9(16):2037-47. PubMed ID: 27464831 [TBL] [Abstract][Full Text] [Related]
17. Insights into selective hydrogenation of levulinic acid using copper on manganese oxide octahedral molecular sieves. Mazumdar NJ; Deshmukh G; Rovea A; Kumar P; Arredondo-Arechavala M; Manyar H R Soc Open Sci; 2022 Jul; 9(7):220078. PubMed ID: 35911198 [TBL] [Abstract][Full Text] [Related]
18. Efficient Vapor-Phase Selective Hydrogenolysis of Bio-Levulinic Acid to γ-Valerolactone Using Cu Supported on Hydrotalcite Catalysts. Mitta H; Seelam PK; Chary KVR; Mutyala S; Boddula R; Inamuddin ; Asiri AM Glob Chall; 2018 Dec; 2(12):1800028. PubMed ID: 30774979 [TBL] [Abstract][Full Text] [Related]
19. The Role of Copper in the Hydrogenation of Furfural and Levulinic Acid. García-Sancho C; Mérida-Robles JM; Cecilia-Buenestado JA; Moreno-Tost R; Maireles-Torres PJ Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768767 [TBL] [Abstract][Full Text] [Related]
20. Valeric Biofuel Production from γ-Valerolactone over Bifunctional Catalysts with Moderate Noble-Metal Loading. Martínez Figueredo KG; Virgilio EM; Segobia DJ; Bertero NM Chempluschem; 2021 Jul; 86(9):1342-1346. PubMed ID: 34405959 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]