These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 36234557)

  • 1. Dynamic Fluid Flow Exacerbates the (Pro-)Inflammatory Effects of Aerosolised Engineered Nanomaterials In Vitro.
    Meldrum K; Moura JA; Doak SH; Clift MJD
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An inter-laboratory effort to harmonize the cell-delivered in vitro dose of aerosolized materials.
    Bannuscher A; Schmid O; Drasler B; Rohrbasser A; Braakhuis HM; Meldrum K; Zwart EP; Gremmer ER; Birk B; Rissel M; Landsiedel R; Moschini E; Evans SJ; Kumar P; Orak S; Doryab A; Erdem JS; Serchi T; Vandebriel RJ; Cassee FR; Doak SH; Petri-Fink A; Zienolddiny S; Clift MJD; Rothen-Rutishauser B
    NanoImpact; 2022 Oct; 28():100439. PubMed ID: 36402283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quartz crystal microbalances (QCM) are suitable for real-time dosimetry in nanotoxicological studies using VITROCELL®Cloud cell exposure systems.
    Ding Y; Weindl P; Lenz AG; Mayer P; Krebs T; Schmid O
    Part Fibre Toxicol; 2020 Sep; 17(1):44. PubMed ID: 32938469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of exposure approaches to
    Meldrum K; Evans SJ; Vogel U; Tran L; Doak SH; Clift MJD
    Nanotoxicology; 2022 Feb; 16(1):114-134. PubMed ID: 35343373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined exposure of diesel exhaust particles and respirable Soufrière Hills volcanic ash causes a (pro-)inflammatory response in an in vitro multicellular epithelial tissue barrier model.
    Tomašek I; Horwell CJ; Damby DE; Barošová H; Geers C; Petri-Fink A; Rothen-Rutishauser B; Clift MJ
    Part Fibre Toxicol; 2016 Dec; 13(1):67. PubMed ID: 27955700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene Expression Profiling of Mono- and Co-Culture Models of the Respiratory Tract Exposed to Crystalline Quartz under Submerged and Air-Liquid Interface Conditions.
    Friesen A; Fritsch-Decker S; Hufnagel M; Mülhopt S; Stapf D; Weiss C; Hartwig A
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Air-liquid interface exposure to aerosols of poorly soluble nanomaterials induces different biological activation levels compared to exposure to suspensions.
    Loret T; Peyret E; Dubreuil M; Aguerre-Chariol O; Bressot C; le Bihan O; Amodeo T; Trouiller B; Braun A; Egles C; Lacroix G
    Part Fibre Toxicol; 2016 Nov; 13(1):58. PubMed ID: 27919268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mimicking exposures to acute and lifetime concentrations of inhaled silver nanoparticles by two different in vitro approaches.
    Herzog F; Loza K; Balog S; Clift MJ; Epple M; Gehr P; Petri-Fink A; Rothen-Rutishauser B
    Beilstein J Nanotechnol; 2014; 5():1357-70. PubMed ID: 25247119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of
    Wang Y; Adamcakova-Dodd A; Steines BR; Jing X; Salem AK; Thorne PS
    NanoImpact; 2020 Apr; 18():. PubMed ID: 32885098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro hazard characterization of simulated aircraft cabin bleed-air contamination in lung models using an air-liquid interface (ALI) exposure system.
    He RW; Houtzager MMG; Jongeneel WP; Westerink RHS; Cassee FR
    Environ Int; 2021 Nov; 156():106718. PubMed ID: 34166876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in cytotoxicity of lung epithelial cells exposed to titanium dioxide nanofibers and nanoparticles: Comparison of air-liquid interface and submerged cell cultures.
    Medina-Reyes EI; Delgado-Buenrostro NL; Leseman DL; Déciga-Alcaraz A; He R; Gremmer ER; Fokkens PHB; Flores-Flores JO; Cassee FR; Chirino YI
    Toxicol In Vitro; 2020 Jun; 65():104798. PubMed ID: 32084520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of an air-liquid interface
    He RW; Braakhuis HM; Vandebriel RJ; Staal YCM; Gremmer ER; Fokkens PHB; Kemp C; Vermeulen J; Westerink RHS; Cassee FR
    J Aerosol Sci; 2021 Mar; 153():105703. PubMed ID: 33658726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of an air-liquid interface exposure system for assessing toxicity of airborne nanoparticles.
    Latvala S; Hedberg J; Möller L; Odnevall Wallinder I; Karlsson HL; Elihn K
    J Appl Toxicol; 2016 Oct; 36(10):1294-301. PubMed ID: 26935862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silica nanoparticles are less toxic to human lung cells when deposited at the air-liquid interface compared to conventional submerged exposure.
    Panas A; Comouth A; Saathoff H; Leisner T; Al-Rawi M; Simon M; Seemann G; Dössel O; Mülhopt S; Paur HR; Fritsch-Decker S; Weiss C; Diabaté S
    Beilstein J Nanotechnol; 2014; 5():1590-1602. PubMed ID: 25247141
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Bessa MJ; Brandão F; Fokkens PHB; Leseman DLAC; Boere AJF; Cassee FR; Salmatonidis A; Viana M; Vulpoi A; Simon S; Monfort E; Teixeira JP; Fraga S
    Nanomaterials (Basel); 2021 Nov; 11(12):. PubMed ID: 34947574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerosol-Cell Exposure System Applied to Semi-Adherent Cells for Aerosolization of Lung Surfactant and Nanoparticles Followed by High Quality RNA Extraction.
    Leroux MM; Hocquel R; Bourge K; Kokot B; Kokot H; Koklič T; Štrancar J; Ding Y; Kumar P; Schmid O; Rihn BH; Ferrari L; Joubert O
    Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35458071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative anti-inflammatory effect of curcumin at air-liquid interface and submerged conditions using lipopolysaccharide stimulated human lung epithelial A549 cells.
    Hu Y; Sheng Y; Ji X; Liu P; Tang L; Chen G; Chen G
    Pulm Pharmacol Ther; 2020 Aug; 63():101939. PubMed ID: 32861762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An in vitro testing strategy towards mimicking the inhalation of high aspect ratio nanoparticles.
    Endes C; Schmid O; Kinnear C; Mueller S; Camarero-Espinosa S; Vanhecke D; Foster EJ; Petri-Fink A; Rothen-Rutishauser B; Weder C; Clift MJ
    Part Fibre Toxicol; 2014 Sep; 11():40. PubMed ID: 25245637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytotoxicity analysis of biomass combustion particles in human pulmonary alveolar epithelial cells on an air-liquid interface/dynamic culture platform.
    Ke S; Liu Q; Zhang X; Yao Y; Yang X; Sui G
    Part Fibre Toxicol; 2021 Aug; 18(1):31. PubMed ID: 34419099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Exposure System Termed NAVETTA for In Vitro Laminar Flow Electrodeposition of Nanoaerosol and Evaluation of Immune Effects in Human Lung Reporter Cells.
    Frijns E; Verstraelen S; Stoehr LC; Van Laer J; Jacobs A; Peters J; Tirez K; Boyles MSP; Geppert M; Madl P; Nelissen I; Duschl A; Himly M
    Environ Sci Technol; 2017 May; 51(9):5259-5269. PubMed ID: 28339192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.