These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 36234576)
1. Characteristics of Cellulose Nanofibrils from Transgenic Trees with Reduced Expression of Cellulose Synthase Interacting 1. Jonasson S; Bünder A; Berglund L; Niittylä T; Oksman K Nanomaterials (Basel); 2022 Oct; 12(19):. PubMed ID: 36234576 [TBL] [Abstract][Full Text] [Related]
2. CELLULOSE SYNTHASE INTERACTING 1 is required for wood mechanics and leaf morphology in aspen. Bünder A; Sundman O; Mahboubi A; Persson S; Mansfield SD; Rüggeberg M; Niittylä T Plant J; 2020 Aug; 103(5):1858-1868. PubMed ID: 32526794 [TBL] [Abstract][Full Text] [Related]
3. Humidity and multiscale structure govern mechanical properties and deformation modes in films of native cellulose nanofibrils. Benítez AJ; Torres-Rendon J; Poutanen M; Walther A Biomacromolecules; 2013 Dec; 14(12):4497-506. PubMed ID: 24245557 [TBL] [Abstract][Full Text] [Related]
4. An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Saito T; Kuramae R; Wohlert J; Berglund LA; Isogai A Biomacromolecules; 2013 Jan; 14(1):248-53. PubMed ID: 23215584 [TBL] [Abstract][Full Text] [Related]
5. Cellulose nanopaper structures of high toughness. Henriksson M; Berglund LA; Isaksson P; Lindström T; Nishino T Biomacromolecules; 2008 Jun; 9(6):1579-85. PubMed ID: 18498189 [TBL] [Abstract][Full Text] [Related]
6. Characteristics of Dialdehyde Cellulose Nanofibrils Derived from Cotton Linter Fibers and Wood Fibers. Tu Q; Gao W; Zhou J; Wu J; Zeng J; Wang B; Xu J Molecules; 2024 Apr; 29(7):. PubMed ID: 38611944 [TBL] [Abstract][Full Text] [Related]
7. The Effect of High Lignin Content on Oxidative Nanofibrillation of Wood Cell Wall. Jonasson S; Bünder A; Berglund L; Hertzberg M; Niittylä T; Oksman K Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33947163 [TBL] [Abstract][Full Text] [Related]
8. Preparation and Characterization of Softwood and Hardwood Nanofibril Hydrogels: Toward Wound Dressing Applications. Baş Y; Berglund L; Niittylä T; Zattarin E; Aili D; Sotra Z; Rinklake I; Junker J; Rakar J; Oksman K Biomacromolecules; 2023 Dec; 24(12):5605-5619. PubMed ID: 37950687 [TBL] [Abstract][Full Text] [Related]
9. Improving the degree of polymerization of cellulose nanofibers by largely preserving native structure of wood fibers. Zhou J; Fang Z; Chen K; Cui J; Yang D; Qiu X Carbohydr Polym; 2022 Nov; 296():119919. PubMed ID: 36087974 [TBL] [Abstract][Full Text] [Related]
10. Cytosolic invertase contributes to the supply of substrate for cellulose biosynthesis in developing wood. Rende U; Wang W; Gandla ML; Jönsson LJ; Niittylä T New Phytol; 2017 Apr; 214(2):796-807. PubMed ID: 28032636 [TBL] [Abstract][Full Text] [Related]
11. Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Håkansson KM; Fall AB; Lundell F; Yu S; Krywka C; Roth SV; Santoro G; Kvick M; Prahl Wittberg L; Wågberg L; Söderberg LD Nat Commun; 2014 Jun; 5():4018. PubMed ID: 24887005 [TBL] [Abstract][Full Text] [Related]
12. Cellulose microfibril angle in the cell wall of wood fibres. Barnett JR; Bonham VA Biol Rev Camb Philos Soc; 2004 May; 79(2):461-72. PubMed ID: 15191232 [TBL] [Abstract][Full Text] [Related]
13. Cellulose Nanofibrils from Nonderivatizing Urea-Based Deep Eutectic Solvent Pretreatments. Li P; Sirviö JA; Haapala A; Liimatainen H ACS Appl Mater Interfaces; 2017 Jan; 9(3):2846-2855. PubMed ID: 27997111 [TBL] [Abstract][Full Text] [Related]
14. Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Fukuzumi H; Saito T; Isogai A Carbohydr Polym; 2013 Mar; 93(1):172-7. PubMed ID: 23465916 [TBL] [Abstract][Full Text] [Related]
15. Effect of Cellulose Nanofibrils and TEMPO-mediated Oxidized Cellulose Nanofibrils on the Physical and Mechanical Properties of Poly(vinylidene fluoride)/Cellulose Nanofibril Composites. Barnes E; Jefcoat JA; Alberts EM; McKechnie MA; Peel HR; Buchanan JP; Weiss CA; Klaus KL; Mimun LC; Warner CM Polymers (Basel); 2019 Jun; 11(7):. PubMed ID: 31252644 [TBL] [Abstract][Full Text] [Related]
16. Transcriptome profiling of Pinus radiata juvenile wood with contrasting stiffness identifies putative candidate genes involved in microfibril orientation and cell wall mechanics. Li X; Wu HX; Southerton SG BMC Genomics; 2011 Oct; 12():480. PubMed ID: 21962175 [TBL] [Abstract][Full Text] [Related]
17. Importance of two consecutive methionines at the N-terminus of a cellulose synthase (PtdCesA8A) for normal wood cellulose synthesis in aspen. Liu Y; Xu F; Gou J; Al-Haddad J; Telewski FW; Bae HJ; Joshi CP Tree Physiol; 2012 Nov; 32(11):1403-12. PubMed ID: 23076823 [TBL] [Abstract][Full Text] [Related]
18. Xylem-specific and tension stress-responsive coexpression of KORRIGAN endoglucanase and three secondary wall-associated cellulose synthase genes in aspen trees. Bhandari S; Fujino T; Thammanagowda S; Zhang D; Xu F; Joshi CP Planta; 2006 Sep; 224(4):828-37. PubMed ID: 16575593 [TBL] [Abstract][Full Text] [Related]
19. Substitution of petrochemical compounds for polyphenols of natural origin reinforced with cellulose nanofibrils to formulate adhesives for wood bonding. Zidanes UL; Lorenço MS; da Silva Araujo E; Dias MC; Rodrigues LLA; Dores BAB; Setter C; Júnior JBG; Tonoli GHD; Mori FA Environ Sci Pollut Res Int; 2023 Jun; 30(29):74426-74440. PubMed ID: 37209330 [TBL] [Abstract][Full Text] [Related]
20. Impact of the Enzyme Charge on the Production and Morphological Features of Cellulose Nanofibrils. Henríquez-Gallegos S; Albornoz-Palma G; Andrade A; Soto C; Pereira M Polymers (Basel); 2021 Sep; 13(19):. PubMed ID: 34641054 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]