BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 36234578)

  • 1. Coupling Effects of Ionic Surfactants and Electrolytes on the Stability of Bulk Nanobubbles.
    Ma X; Li M; Xu X; Sun C
    Nanomaterials (Basel); 2022 Oct; 12(19):. PubMed ID: 36234578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion adsorption stabilizes bulk nanobubbles.
    Ma X; Li M; Pfeiffer P; Eisener J; Ohl CD; Sun C
    J Colloid Interface Sci; 2022 Jan; 606(Pt 2):1380-1394. PubMed ID: 34492474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of the Decrease in Surface Tension by Bulk Nanobubbles (Ultrafine Bubbles).
    Yasui K; Tuziuti T; Kanematsu W
    Langmuir; 2023 Nov; 39(46):16574-16583. PubMed ID: 37934653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interpreting the interfacial and colloidal stability of bulk nanobubbles.
    Nirmalkar N; Pacek AW; Barigou M
    Soft Matter; 2018 Dec; 14(47):9643-9656. PubMed ID: 30457138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ion-Specific and Thermal Effects in the Stabilization of the Gas Nanobubble Phase in Bulk Aqueous Electrolyte Solutions.
    Yurchenko SO; Shkirin AV; Ninham BW; Sychev AA; Babenko VA; Penkov NV; Kryuchkov NP; Bunkin NF
    Langmuir; 2016 Nov; 32(43):11245-11255. PubMed ID: 27350310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disjoining pressures, zeta potentials and surface tensions of aqueous non-ionic surfactant/electrolyte solutions: theory and comparison to experiment.
    Karraker KA; Radke CJ
    Adv Colloid Interface Sci; 2002 Feb; 96(1-3):231-64. PubMed ID: 11908789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collective Dynamics of Bulk Nanobubbles with Size-Dependent Surface Tension.
    Wang S; Zhou L; Wang X; Hu J; Li P; Lin G; Gao Y; Zhang L; Wang C
    Langmuir; 2021 Jul; 37(26):7986-7994. PubMed ID: 34157841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface enrichment of ions leads to the stability of bulk nanobubbles.
    Zhang H; Guo Z; Zhang X
    Soft Matter; 2020 Jun; 16(23):5470-5477. PubMed ID: 32484196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bulk Nanobubbles from Acoustically Cavitated Aqueous Organic Solvent Mixtures.
    Nirmalkar N; Pacek AW; Barigou M
    Langmuir; 2019 Feb; 35(6):2188-2195. PubMed ID: 30636423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the Existence and Stability of Bulk Nanobubbles.
    Nirmalkar N; Pacek AW; Barigou M
    Langmuir; 2018 Sep; 34(37):10964-10973. PubMed ID: 30179016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of electrolytes and surfactants on generation and longevity of carbon dioxide nanobubbles.
    Phan K; Truong T; Wang Y; Bhandari B
    Food Chem; 2021 Nov; 363():130299. PubMed ID: 34147892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The fate of bulk nanobubbles under gas dissolution.
    Zhang H; Chen S; Guo Z; Zhang X
    Phys Chem Chem Phys; 2022 Apr; 24(16):9685-9694. PubMed ID: 35411898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Surfactant on Electrochemically Generated Surface Nanobubbles.
    Suvira M; Zhang B
    Anal Chem; 2021 Mar; 93(12):5170-5176. PubMed ID: 33733748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How bulk nanobubbles are stable over a wide range of temperatures.
    Li M; Ma X; Eisener J; Pfeiffer P; Ohl CD; Sun C
    J Colloid Interface Sci; 2021 Aug; 596():184-198. PubMed ID: 33845226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the clustering of bulk nanobubbles and their colloidal stability.
    Jadhav AJ; Barigou M
    J Colloid Interface Sci; 2021 Nov; 601():816-824. PubMed ID: 34107317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxyl ion stabilization of bulk nanobubbles resulting from microbubble shrinkage.
    Satpute PA; Earthman JC
    J Colloid Interface Sci; 2021 Feb; 584():449-455. PubMed ID: 33091868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Hofmeister series effect in adsorption of cationic surfactants--theoretical description and experimental results.
    Para G; Jarek E; Warszynski P
    Adv Colloid Interface Sci; 2006 Sep; 122(1-3):39-55. PubMed ID: 16905112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bulk nanobubbles: Production and investigation of their formation/stability mechanism.
    Michailidi ED; Bomis G; Varoutoglou A; Kyzas GZ; Mitrikas G; Mitropoulos AC; Efthimiadou EK; Favvas EP
    J Colloid Interface Sci; 2020 Mar; 564():371-380. PubMed ID: 31918204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Investigation of Cavitation Bulk Nanobubbles Characteristics: Effects of pH and Surface-Active Agents.
    Prakash R; Lee J; Moon Y; Pradhan D; Kim SH; Lee HY; Lee J
    Langmuir; 2023 Feb; 39(5):1968-1986. PubMed ID: 36692411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface charge-induced EDL interaction on the contact angle of surface nanobubbles.
    Jing D; Li D; Pan Y; Bhushan B
    Langmuir; 2016 Nov; 32(43):11123-11132. PubMed ID: 27258966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.