These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36234853)

  • 1. MOF-808 as a Highly Active Catalyst for the Diastereoselective Reduction of Substituted Cyclohexanones.
    Mautschke HH; Llabrés I Xamena FX
    Molecules; 2022 Sep; 27(19):. PubMed ID: 36234853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-Step Chemo-, Regio- and Stereoselective Reduction of Ketosteroids to Hydroxysteroids over Zr-Containing MOF-808 Metal-Organic Frameworks.
    Mautschke HH; Llabrés I Xamena FX
    Chemistry; 2021 Jul; 27(41):10766-10775. PubMed ID: 33998732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of the Meerwein-Ponndorf-Verley-Oppenauer (MPVO) redox equilibrium on Sn- and Zr-beta zeolite catalysts.
    Boronat M; Corma A; Renz M
    J Phys Chem B; 2006 Oct; 110(42):21168-74. PubMed ID: 17048941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amidophosphane-copper(I)-catalyzed asymmetric conjugate addition of dialkylzinc reagents to racemic 6-substituted cyclohexenones to form 2,5-di- and 2,2,5-trisubstituted cyclohexanones.
    Selim K; Soeta T; Yamada K; Tomioka K
    Chem Asian J; 2008 Feb; 3(2):342-50. PubMed ID: 18069713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A two-directional approach to a (-)-dictyostatin C11-C23 segment: development of a highly diastereoselective, kinetically-controlled Meerwein-Ponndorf-Verley reduction.
    Dilger AK; Gopalsamuthiram V; Burke SD
    J Am Chem Soc; 2007 Dec; 129(51):16273-7. PubMed ID: 18047348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous Zirconium-Phytic Acid Hybrid: a Highly Efficient Catalyst for Meerwein-Ponndorf-Verley Reductions.
    Song J; Zhou B; Zhou H; Wu L; Meng Q; Liu Z; Han B
    Angew Chem Int Ed Engl; 2015 Aug; 54(32):9399-403. PubMed ID: 26177726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper(I)-Catalyzed Synthesis of Unsymmetrical All-Carbon Bis-Quaternary Centers at the Opposing α-Carbons of Cyclohexanones.
    Malone JA; Philkhana SC; Stepherson JR; Badmus FO; Fronczek FR; Kartika R
    Org Lett; 2022 Jul; 24(26):4810-4815. PubMed ID: 35767696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of Cyclohexanol and Cyclohexanone Yield in the Photocatalytic Oxofunctionalization of Cyclohexane over Degussa P-25 under Visible Light.
    Henríquez A; Melin V; Moreno N; Mansilla HD; Contreras D
    Molecules; 2019 Jun; 24(12):. PubMed ID: 31208090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic Meerwein-Ponndorf-Verley reduction in the diastereoselective synthesis of 17α-estradiol.
    Ahmed G; Nickisch K
    Steroids; 2016 Sep; 113():1-4. PubMed ID: 27137355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly diastereoselective catalytic Meerwein-Ponndorf-Verley reductions.
    Yin J; Huffman MA; Conrad KM; Armstrong JD
    J Org Chem; 2006 Jan; 71(2):840-3. PubMed ID: 16409008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anchored Aluminum Catalyzed Meerwein-Ponndorf-Verley Reduction at the Metal Nodes of Robust MOFs.
    Larson PJ; Cheney JL; French AD; Klein DM; Wylie BJ; Cozzolino AF
    Inorg Chem; 2018 Jun; 57(12):6825-6832. PubMed ID: 29878771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A triple cascade approach towards the diastereoselective synthesis of spiro
    Settipalli PC; Anwar S
    Chem Commun (Camb); 2022 Sep; 58(74):10400-10403. PubMed ID: 36039826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MOF-Assisted Synthesis of Highly Mesoporous Cr
    Chen F; Shen K; Yang Y; Huang H; Li Y
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):48691-48699. PubMed ID: 33073975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective nickel-catalyzed conversion of model and lignin-derived phenolic compounds to cyclohexanone-based polymer building blocks.
    Schutyser W; Van den Bosch S; Dijkmans J; Turner S; Meledina M; Van Tendeloo G; Debecker DP; Sels BF
    ChemSusChem; 2015 May; 8(10):1805-18. PubMed ID: 25881563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of cyclohexanol in urine and its use in environmental monitoring of cyclohexanone exposure.
    Ong CN; Sia GL; Chia SE; Phoon WH; Tan KT
    J Anal Toxicol; 1991; 15(1):13-6. PubMed ID: 2046335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Efficient, Catalytic Meerwein-Ponndorf-Verley Reduction with a Novel Bidentate Aluminum Catalyst.
    Ooi T; Miura T; Maruoka K
    Angew Chem Int Ed Engl; 1998 Sep; 37(17):2347-2349. PubMed ID: 29710956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemoselectivity issues of the asymmetric interaction between cyclohexanone, β-nitrostyrene, and benzoic acid under 5-aryl prolinate's organocatalysis.
    Ivantcova PM; Kudryavtsev KV
    Chirality; 2020 Jun; 32(6):833-841. PubMed ID: 32168390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New bioorganic reagents: evolved cyclohexanone monooxygenase--why is it more selective?
    Kayser MM; Clouthier CM
    J Org Chem; 2006 Oct; 71(22):8424-30. PubMed ID: 17064015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Al-free Sn-Beta zeolite as a catalyst for the selective reduction of carbonyl compounds (Meerwein-Ponndorf-Verley reaction).
    Corma A; Domine ME; Nemeth L; Valencia S
    J Am Chem Soc; 2002 Apr; 124(13):3194-5. PubMed ID: 11916388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An organocatalytic approach to enantiomerically enriched α-arylcyclohexenones and cyclohexanones.
    Duce S; Jorge M; Alonso I; García Ruano JL; Cid MB
    Org Biomol Chem; 2011 Dec; 9(24):8253-60. PubMed ID: 22041709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.