These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Analysis of the Effect of Fiber Orientation on Mechanical and Elastic Characteristics at Axial Stresses of GFRP Used in Wind Turbine Blades. Morăraș CI; Goanță V; Husaru D; Istrate B; Bârsănescu PD; Munteanu C Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850147 [TBL] [Abstract][Full Text] [Related]
3. Numerical and Experimental Analysis of Horizontal-Axis Wind Turbine Blade Fatigue Life. Shah I; Khan A; Ali M; Shahab S; Aziz S; Noon MAA; Tipu JAK Materials (Basel); 2023 Jul; 16(13):. PubMed ID: 37445118 [TBL] [Abstract][Full Text] [Related]
4. PSO-BP Neural Network-Based Strain Prediction of Wind Turbine Blades. Liu X; Liu Z; Liang Z; Zhu SP; Correia JAFO; De Jesus AMP Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31212753 [TBL] [Abstract][Full Text] [Related]
5. Acoustic-Signal-Based Damage Detection of Wind Turbine Blades-A Review. Ding S; Yang C; Zhang S Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299714 [TBL] [Abstract][Full Text] [Related]
6. Effects of Graphene Reinforcement on Static Bending, Free Vibration, and Torsion of Wind Turbine Blades. Kim HJ; Cho JR Materials (Basel); 2024 Jul; 17(13):. PubMed ID: 38998411 [TBL] [Abstract][Full Text] [Related]
7. Exploratory Study on the Application of Graphene Platelet-Reinforced Composite to Wind Turbine Blade. Kim HJ; Cho JR Polymers (Basel); 2024 Jul; 16(14):. PubMed ID: 39065319 [TBL] [Abstract][Full Text] [Related]
9. Prediction of the Damage Effect on Fiberglass-Reinforced Polymer Matrix Composites for Wind Turbine Blades. Stanciu MD; Nastac SM; Tesula I Polymers (Basel); 2022 Apr; 14(7):. PubMed ID: 35406344 [TBL] [Abstract][Full Text] [Related]
10. Full-Scale Fatigue Testing of a Wind Turbine Blade in Flapwise Direction and Examining the Effect of Crack Propagation on the Blade Performance. Al-Khudairi O; Hadavinia H; Little C; Gillmore G; Greaves P; Dyer K Materials (Basel); 2017 Oct; 10(10):. PubMed ID: 28972548 [TBL] [Abstract][Full Text] [Related]
11. Multiobjective Optimization of Composite Wind Turbine Blade. Jureczko M; Mrówka M Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806770 [TBL] [Abstract][Full Text] [Related]
12. The Use of Wind Turbine Blades to Build Road Noise Barriers as an Example of a Circular Economy Model. Broniewicz M; Halicka A; Buda-Ożóg L; Broniewicz F; Nykiel D; Jabłoński Ł Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730855 [TBL] [Abstract][Full Text] [Related]
13. In-Depth Study on the Application of a Graphene Platelet-reinforced Composite to Wind Turbine Blades. Kim HJ; Cho JR Materials (Basel); 2024 Aug; 17(16):. PubMed ID: 39203084 [TBL] [Abstract][Full Text] [Related]
14. Study on coupled mode flutter parameters of large wind turbine blades. Zhuang Y; Yuan G Sci Rep; 2024 Jun; 14(1):12804. PubMed ID: 38834607 [TBL] [Abstract][Full Text] [Related]
15. A Machine Vision Method for Identifying Blade Tip Clearance in Wind Turbines. Zhang L; Wei J Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338680 [TBL] [Abstract][Full Text] [Related]
16. Moving Accelerometers to the Tip: Monitoring of Wind Turbine Blade Bending Using 3D Accelerometers and Model-Based Bending Shapes. Loss T; Bergmann A Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32957685 [TBL] [Abstract][Full Text] [Related]
17. Root Causes and Mechanisms of Failure of Wind Turbine Blades: Overview. Mishnaevsky L Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591294 [TBL] [Abstract][Full Text] [Related]
18. Manufacture of High-Performance Tidal Turbine Blades Using Advanced Composite Manufacturing Technologies. Finnegan W; Allen R; Glennon C; Maguire J; Flanagan M; Flanagan T Appl Compos Mater (Dordr); 2021; 28(6):2061-2086. PubMed ID: 35035103 [TBL] [Abstract][Full Text] [Related]