BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 36235906)

  • 1. All-Cellulose Composite Laminates Made from Wood-Based Textiles: Effects of Process Conditions and the Addition of TEMPO-Oxidized Nanocellulose.
    Uusi-Tarkka EK; Levanič J; Heräjärvi H; Kadi N; Skrifvars M; Haapala A
    Polymers (Basel); 2022 Sep; 14(19):. PubMed ID: 36235906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical and Thermal Properties of Wood-Fiber-Based All-Cellulose Composites and Cellulose-Polypropylene Biocomposites.
    Uusi-Tarkka EK; Skrifvars M; Khalili P; Heräjärvi H; Kadi N; Haapala A
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and characterization of micro/nanocellulose reinforced PVDF/wood composites.
    Xu J; Xu X; Xu C; Jing Y; Shentu B
    Int J Biol Macromol; 2022 Nov; 220():766-774. PubMed ID: 35987360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastrong and high gas-barrier nanocellulose/clay-layered composites.
    Wu CN; Saito T; Fujisawa S; Fukuzumi H; Isogai A
    Biomacromolecules; 2012 Jun; 13(6):1927-32. PubMed ID: 22568705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanocellulose-Reinforced Polyurethane for Waterborne Wood Coating.
    Kong L; Xu D; He Z; Wang F; Gui S; Fan J; Pan X; Dai X; Dong X; Liu B; Li Y
    Molecules; 2019 Aug; 24(17):. PubMed ID: 31470628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recycling of Nanocellulose from Polyester-Cotton Textile Waste for Modification of Film Composites.
    Srichola P; Witthayolankowit K; Sukyai P; Sampoompuang C; Lobyam K; Kampakun P; Toomtong R
    Polymers (Basel); 2023 Aug; 15(15):. PubMed ID: 37571218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward millimeter thick cellulose nanofiber/epoxy laminates with good transparency and high flexural strength.
    Lee K; Kwon G; Jeon Y; Jeon S; Hong C; Choung JW; You J
    Carbohydr Polym; 2022 Sep; 291():119514. PubMed ID: 35698324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All-cellulose and all-wood composites by partial dissolution of cotton fabric and wood in ionic liquid.
    Shibata M; Teramoto N; Nakamura T; Saitoh Y
    Carbohydr Polym; 2013 Nov; 98(2):1532-9. PubMed ID: 24053836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of mechanical and thermal properties of Ixora coccinea L. plant root derived nanocellulose using polyethylene glycol-glutaraldehyde system.
    Unni R; Reshmy R; Latha MS; Philip E; Sindhu R; Binod P; Pandey A; Awasthi MK
    Chemosphere; 2022 Jul; 298():134324. PubMed ID: 35307393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Cellulose Nanofibrils and TEMPO-mediated Oxidized Cellulose Nanofibrils on the Physical and Mechanical Properties of Poly(vinylidene fluoride)/Cellulose Nanofibril Composites.
    Barnes E; Jefcoat JA; Alberts EM; McKechnie MA; Peel HR; Buchanan JP; Weiss CA; Klaus KL; Mimun LC; Warner CM
    Polymers (Basel); 2019 Jun; 11(7):. PubMed ID: 31252644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong, self-standing oxygen barrier films from nanocelluloses modified with regioselective oxidative treatments.
    Sirviö JA; Kolehmainen A; Visanko M; Liimatainen H; Niinimäki J; Hormi OE
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14384-90. PubMed ID: 25089516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly tough and transparent layered composites of nanocellulose and synthetic silicate.
    Wu CN; Yang Q; Takeuchi M; Saito T; Isogai A
    Nanoscale; 2014 Jan; 6(1):392-9. PubMed ID: 24201761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suspended Multifunctional Nanocellulose as Additive for Mortars.
    Diamanti MV; Tedeschi C; Taccia M; Torri G; Massironi N; Tognoli C; Vismara E
    Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct conversion of raw wood to TEMPO-oxidized cellulose nanofibers.
    Kaffashsaie E; Yousefi H; Nishino T; Matsumoto T; Mashkour M; Madhoushi M; Kawaguchi H
    Carbohydr Polym; 2021 Jun; 262():117938. PubMed ID: 33838815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Woven Textile Structural Polymer Composites: Effect of Resin Processing Parameters on Mechanical Performance.
    Mishra RK; Petru M; Behera BK; Behera PK
    Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Surfactants on the Preparation of Nanocellulose-PLA Composites.
    Immonen K; Lahtinen P; Pere J
    Bioengineering (Basel); 2017 Nov; 4(4):. PubMed ID: 29149057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanocellulose Film Properties Tunable by Controlling Degree of Fibrillation of TEMPO-Oxidized Cellulose.
    Wakabayashi M; Fujisawa S; Saito T; Isogai A
    Front Chem; 2020; 8():37. PubMed ID: 32117870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanocellulose from recycled indigo-dyed denim fabric and its application in composite films.
    Zhong T; Dhandapani R; Liang D; Wang J; Wolcott MP; Van Fossen D; Liu H
    Carbohydr Polym; 2020 Jul; 240():116283. PubMed ID: 32475567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Nanocellulose on the Properties of Cottonseed Protein Isolate as a Paper Strength Agent.
    Jordan JH; Cheng HN; Easson MW; Yao W; Condon BD; Gibb BC
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanocellulose toward Advanced Energy Storage Devices: Structure and Electrochemistry.
    Chen C; Hu L
    Acc Chem Res; 2018 Dec; 51(12):3154-3165. PubMed ID: 30299086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.