These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 36235906)

  • 21. Nanocellulose toward Advanced Energy Storage Devices: Structure and Electrochemistry.
    Chen C; Hu L
    Acc Chem Res; 2018 Dec; 51(12):3154-3165. PubMed ID: 30299086
    [TBL] [Abstract][Full Text] [Related]  

  • 22. TEMPO-oxidized nanocellulose films derived from coconut residues: Physicochemical, mechanical and electrical properties.
    Hassan SH; Velayutham TS; Chen YW; Lee HV
    Int J Biol Macromol; 2021 Jun; 180():392-402. PubMed ID: 33737185
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Trends on the Cellulose-Based Textiles: Raw Materials and Technologies.
    Felgueiras C; Azoia NG; Gonçalves C; Gama M; Dourado F
    Front Bioeng Biotechnol; 2021; 9():608826. PubMed ID: 33869148
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Additively-Manufactured High-Concentration Nanocellulose Composites: Structure and Mechanical Properties.
    Latif M; Jiang Y; Song J; Kim J
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771967
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Role of Dissolution Time on the Properties of All-Cellulose Composites Obtained from Oil Palm Empty Fruit Bunch.
    Jaafar MZ; Mohd Ridzuan FF; Mohamad Kassim MH; Abu F
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771992
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TEMPO-Oxidized Nanocellulose Films Modified by Tea Saponin Derived from
    Jiang N; Hu Y; Cheng Y
    Polymers (Basel); 2024 Apr; 16(7):. PubMed ID: 38611274
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wood-inspired high strength and lightweight aerogel based on carbon nanotube and nanocellulose fiber for heat collection.
    Li H; Zong Y; He J; Ding Q; Jiang Y; Li X; Han W
    Carbohydr Polym; 2022 Mar; 280():119036. PubMed ID: 35027119
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Poly(3-hydroxybutyrate) Modified by Plasma and TEMPO-Oxidized Celluloses.
    Panaitescu DM; Vizireanu S; Stoian SA; Nicolae CA; Gabor AR; Damian CM; Trusca R; Carpen LG; Dinescu G
    Polymers (Basel); 2020 Jul; 12(7):. PubMed ID: 32646005
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solvent infusion processing of all-cellulose composite materials.
    Huber T; Bickerton S; Müssig J; Pang S; Staiger MP
    Carbohydr Polym; 2012 Sep; 90(1):730-3. PubMed ID: 24751100
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers.
    Iwamoto S; Isogai A; Iwata T
    Biomacromolecules; 2011 Mar; 12(3):831-6. PubMed ID: 21302950
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermally Insulating and Moisture-Resilient Foams Based on Upcycled Aramid Nanofibers and Nanocellulose.
    Di A; Schiele C; Hadi SE; Bergström L
    Adv Mater; 2023 Nov; 35(48):e2305195. PubMed ID: 37735848
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent Progress on Nanocellulose Aerogels: Preparation, Modification, Composite Fabrication, Applications.
    Chen Y; Zhang L; Yang Y; Pang B; Xu W; Duan G; Jiang S; Zhang K
    Adv Mater; 2021 Mar; 33(11):e2005569. PubMed ID: 33538067
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microneedles from Fishscale-Nanocellulose Blends Using Low Temperature Mechanical Press Method.
    Olatunji O; Olsson RT
    Pharmaceutics; 2015 Sep; 7(4):363-78. PubMed ID: 26404358
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Melt-processed poly (vinyl alcohol)/corn starch/nanocellulose composites with improved mechanical properties.
    Zhou P; Luo Y; Lv Z; Sun X; Tian Y; Zhang X
    Int J Biol Macromol; 2021 Jul; 183():1903-1910. PubMed ID: 34097954
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Patternable Nanocellulose/Ti
    Jin X; Wang S; Sang C; Yue Y; Xu X; Mei C; Xiao H; Lou Z; Han J
    ACS Appl Mater Interfaces; 2022 Aug; 14(30):35040-35052. PubMed ID: 35861436
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comprehensive review on nanocellulose: Recent developments, challenges and future prospects.
    Thomas P; Duolikun T; Rumjit NP; Moosavi S; Lai CW; Bin Johan MR; Fen LB
    J Mech Behav Biomed Mater; 2020 Oct; 110():103884. PubMed ID: 32957191
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of Different Nanocellulose Additives on Processing and Performance of PAN-Based Carbon Fibers.
    Jiang E; Maghe M; Zohdi N; Amiralian N; Naebe M; Laycock B; Fox BL; Martin DJ; Annamalai PK
    ACS Omega; 2019 Jun; 4(6):9720-9730. PubMed ID: 31460062
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preserving Cellulose Structure: Delignified Wood Fibers for Paper Structures of High Strength and Transparency.
    Yang X; Berthold F; Berglund LA
    Biomacromolecules; 2018 Jul; 19(7):3020-3029. PubMed ID: 29757614
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pretreatment-dependent surface chemistry of wood nanocellulose for pH-sensitive hydrogels.
    Chinga-Carrasco G; Syverud K
    J Biomater Appl; 2014 Sep; 29(3):423-32. PubMed ID: 24713295
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanical Properties of Bio-Composites Based on Epoxy Resin and Nanocellulose Fibres.
    Roszowska-Jarosz M; Masiewicz J; Kostrzewa M; Kucharczyk W; Żurowski W; Kucińska-Lipka J; Przybyłek P
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34206754
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.