These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 36236247)

  • 1. Benchmarking of Various LiDAR Sensors for Use in Self-Driving Vehicles in Real-World Environments.
    Schulte-Tigges J; Förster M; Nikolovski G; Reke M; Ferrein A; Kaszner D; Matheis D; Walter T
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Survey on Ground Segmentation Methods for Automotive LiDAR Sensors.
    Gomes T; Matias D; Campos A; Cunha L; Roriz R
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of 3D Vulnerable Objects' Detection Using a Multi-Sensors System for Autonomous Vehicles.
    Khatab E; Onsy A; Abouelfarag A
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-Time LIDAR-Based Urban Road and Sidewalk Detection for Autonomous Vehicles.
    Horváth E; Pozna C; Unger M
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conception of a High-Level Perception and Localization System for Autonomous Driving.
    Dauptain X; Koné A; Grolleau D; Cerezo V; Gennesseaux M; Do MT
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Automotive LiDAR Performance Test Method in Dynamic Driving Conditions.
    Park J; Cho J; Lee S; Bak S; Kim Y
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research Scenarios of Autonomous Vehicles, the Sensors and Measurement Systems Used in Experiments.
    Prochowski L; Szwajkowski P; Ziubiński M
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36081043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an Autonomous Driving Vehicle for Garbage Collection in Residential Areas.
    Pyo JW; Bae SH; Joo SH; Lee MK; Ghosh A; Kuc TY
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance Analysis of NDT-based Graph SLAM for Autonomous Vehicle in Diverse Typical Driving Scenarios of Hong Kong.
    Wen W; Hsu LT; Zhang G
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30441784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GAN-Based LiDAR Translation between Sunny and Adverse Weather for Autonomous Driving and Driving Simulation.
    Lee J; Shiotsuka D; Nishimori T; Nakao K; Kamijo S
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensor and Sensor Fusion Technology in Autonomous Vehicles: A Review.
    Yeong J; Velasco-Hernandez G; Barry J; Walsh J
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33803889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LiDAR Point Cloud Generation for SLAM Algorithm Evaluation.
    Sobczak Ł; Filus K; Domański A; Domańska J
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34064712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental Study Regarding Long Range LiDAR Capabilities in Sensing Safety Distance for Vehicle Application.
    Popa G; Gheți MA; Tudor E; Vasile I; Sburlan IC
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dynamic test scenario generation method for autonomous vehicles based on conditional generative adversarial imitation learning.
    Jia L; Yang D; Ren Y; Qian C; Feng Q; Sun B; Wang Z
    Accid Anal Prev; 2024 Jan; 194():107279. PubMed ID: 37897956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of Lidar Actuator System Influence on the Quality of Dense 3D Point Cloud Obtained with SLAM.
    Trybała P; Szrek J; Dębogórski B; Ziętek B; Blachowski J; Wodecki J; Zimroz R
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of an Energy Efficient and Cost Effective Autonomous Vehicle Research Platform.
    Brown NE; Rojas JF; Goberville NA; Alzubi H; AlRousan Q; Wang CR; Huff S; Rios-Torres J; Ekti AR; LaClair TJ; Meyer R; Asher ZD
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Tuning Method for Increased Obstacle Detection Reliability Based on Internet of Things LiDAR Sensor Models.
    Castaño F; Beruvides G; Villalonga A; Haber RE
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29748521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LiDAR-driven spiking neural network for collision avoidance in autonomous driving.
    Shalumov A; Halaly R; Tsur EE
    Bioinspir Biomim; 2021 Oct; 16(6):. PubMed ID: 34551395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Safer than the average human driver (who is less safe than me)? Examining a popular safety benchmark for self-driving cars.
    Nees MA
    J Safety Res; 2019 Jun; 69():61-68. PubMed ID: 31235236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multitarget-Tracking Method Based on the Fusion of Millimeter-Wave Radar and LiDAR Sensor Information for Autonomous Vehicles.
    Shi J; Tang Y; Gao J; Piao C; Wang Z
    Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.