BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 36236265)

  • 21. Photoplethysmography temporal marker-based machine learning classifier for anesthesia drug detection.
    Khalid SG; Ali SM; Liu H; Qurashi AG; Ali U
    Med Biol Eng Comput; 2022 Nov; 60(11):3057-3068. PubMed ID: 36063352
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preeminently Robust Neural PPG Denoiser.
    Kwon JH; Kim SE; Kim NH; Lee EC; Lee JH
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336253
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On Robustness of Neural Architecture Search Under Label Noise.
    Chen YW; Song Q; Liu X; Sastry PS; Hu X
    Front Big Data; 2020; 3():2. PubMed ID: 33693377
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bayesian statistics-guided label refurbishment mechanism: Mitigating label noise in medical image classification.
    Gao M; Feng X; Geng M; Jiang Z; Zhu L; Meng X; Zhou C; Ren Q; Lu Y
    Med Phys; 2022 Sep; 49(9):5899-5913. PubMed ID: 35678232
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Signal Quality Assessment of PPG Signals using STFT Time-Frequency Spectra and Deep Learning Approaches.
    Chen J; Sun K; Sun Y; Li X
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1153-1156. PubMed ID: 34891492
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A supervised machine learning semantic segmentation approach for detecting artifacts in plethysmography signals from wearables.
    Guo Z; Ding C; Hu X; Rudin C
    Physiol Meas; 2021 Dec; 42(12):. PubMed ID: 34794126
    [No Abstract]   [Full Text] [Related]  

  • 27. Combining deep residual neural network features with supervised machine learning algorithms to classify diverse food image datasets.
    McAllister P; Zheng H; Bond R; Moorhead A
    Comput Biol Med; 2018 Apr; 95():217-233. PubMed ID: 29549733
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hemorrhagic risk prediction in coronary artery disease patients based on photoplethysmography and machine learning.
    He Z; Zhang H; Chen X; Shi J; Bai L; Fang Z; Wang R
    Sci Rep; 2022 Nov; 12(1):19190. PubMed ID: 36357443
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Machine-learning models for activity class prediction: A comparative study of feature selection and classification algorithms.
    Chong J; Tjurin P; Niemelä M; Jämsä T; Farrahi V
    Gait Posture; 2021 Sep; 89():45-53. PubMed ID: 34225240
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A machine learning approach for hypertension detection based on photoplethysmography and clinical data.
    Martinez-Ríos E; Montesinos L; Alfaro-Ponce M
    Comput Biol Med; 2022 Jun; 145():105479. PubMed ID: 35398810
    [TBL] [Abstract][Full Text] [Related]  

  • 31. BadLabel: A Robust Perspective on Evaluating and Enhancing Label-Noise Learning.
    Zhang J; Song B; Wang H; Han B; Liu T; Liu L; Sugiyama M
    IEEE Trans Pattern Anal Mach Intell; 2024 Jun; 46(6):4398-4409. PubMed ID: 38236681
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison and Noise Suppression of the Transmitted and Reflected Photoplethysmography Signals.
    Li S; Liu L; Wu J; Tang B; Li D
    Biomed Res Int; 2018; 2018():4523593. PubMed ID: 30356404
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Probing machine-learning classifiers using noise, bubbles, and reverse correlation.
    Thoret E; Andrillon T; Léger D; Pressnitzer D
    J Neurosci Methods; 2021 Oct; 362():109297. PubMed ID: 34320410
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Compare the performance of multiple binary classification models in microbial high-throughput sequencing datasets.
    Xu N; Zhang Z; Shen Y; Zhang Q; Liu Z; Yu Y; Wang Y; Lei C; Ke M; Qiu D; Lu T; Chen Y; Xiong J; Qian H
    Sci Total Environ; 2022 Sep; 837():155807. PubMed ID: 35537509
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inter-labeler and intra-labeler variability of condition severity classification models using active and passive learning methods.
    Nissim N; Shahar Y; Elovici Y; Hripcsak G; Moskovitch R
    Artif Intell Med; 2017 Sep; 81():12-32. PubMed ID: 28456512
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transfer learning for classification of cardiovascular tissues in histological images.
    Mazo C; Bernal J; Trujillo M; Alegre E
    Comput Methods Programs Biomed; 2018 Oct; 165():69-76. PubMed ID: 30337082
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessing the signal quality of electrocardiograms from varied acquisition sources: A generic machine learning pipeline for model generation.
    Albaba A; Simões-Capela N; Wang Y; Hendriks RC; De Raedt W; Van Hoof C
    Comput Biol Med; 2021 Mar; 130():104164. PubMed ID: 33360108
    [TBL] [Abstract][Full Text] [Related]  

  • 38. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations.
    Vu H; Kim HC; Jung M; Lee JH
    Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Do we need different machine learning algorithms for QSAR modeling? A comprehensive assessment of 16 machine learning algorithms on 14 QSAR data sets.
    Wu Z; Zhu M; Kang Y; Leung EL; Lei T; Shen C; Jiang D; Wang Z; Cao D; Hou T
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33313673
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of apnea during respiratory monitoring using support vector machine classifier: a pilot study.
    Pradhapan P; Swaminathan M; Salila Vijayalal Mohan HK; Sriraam N
    J Clin Monit Comput; 2013 Apr; 27(2):179-85. PubMed ID: 23179018
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.