BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 36236325)

  • 1. Effectively Predicting the Presence of Coronary Heart Disease Using Machine Learning Classifiers.
    Hassan CAU; Iqbal J; Irfan R; Hussain S; Algarni AD; Bukhari SSH; Alturki N; Ullah SS
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning Hybrid Model for the Prediction of Chronic Kidney Disease.
    Khalid H; Khan A; Zahid Khan M; Mehmood G; Shuaib Qureshi M
    Comput Intell Neurosci; 2023; 2023():9266889. PubMed ID: 36959840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers.
    Deist TM; Dankers FJWM; Valdes G; Wijsman R; Hsu IC; Oberije C; Lustberg T; van Soest J; Hoebers F; Jochems A; El Naqa I; Wee L; Morin O; Raleigh DR; Bots W; Kaanders JH; Belderbos J; Kwint M; Solberg T; Monshouwer R; Bussink J; Dekker A; Lambin P
    Med Phys; 2018 Jul; 45(7):3449-3459. PubMed ID: 29763967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the use of association rules in random forest for predicting heart disease.
    Barry KA; Manzali Y; Flouchi R; Balouki Y; Chelhi K; Elfar M
    Comput Methods Biomech Biomed Engin; 2024 Mar; 27(3):338-346. PubMed ID: 36877167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of Flight Time Deviation for Lithuanian Airports Using Supervised Machine Learning Model.
    Stefanovič P; Štrimaitis R; Kurasova O
    Comput Intell Neurosci; 2020; 2020():8878681. PubMed ID: 33178261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heart disease prediction using supervised machine learning algorithms: Performance analysis and comparison.
    Ali MM; Paul BK; Ahmed K; Bui FM; Quinn JMW; Moni MA
    Comput Biol Med; 2021 Sep; 136():104672. PubMed ID: 34315030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Breast cancer prediction with transcriptome profiling using feature selection and machine learning methods.
    Taghizadeh E; Heydarheydari S; Saberi A; JafarpoorNesheli S; Rezaeijo SM
    BMC Bioinformatics; 2022 Oct; 23(1):410. PubMed ID: 36183055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of machine learning classifiers to X-ray diffraction imaging with medically relevant phantoms.
    Stryker S; Kapadia AJ; Greenberg JA
    Med Phys; 2022 Jan; 49(1):532-546. PubMed ID: 34799852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Survival prediction among heart patients using machine learning techniques.
    Almazroi AA
    Math Biosci Eng; 2022 Jan; 19(1):134-145. PubMed ID: 34902984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precision healthcare: A deep dive into machine learning algorithms and feature selection strategies for accurate heart disease prediction.
    Islam MA; Majumder MZH; Miah MS; Jannaty S
    Comput Biol Med; 2024 Jun; 176():108432. PubMed ID: 38744014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Score and Correlation Coefficient-Based Feature Selection for Predicting Heart Failure Diagnosis by Using Machine Learning Algorithms.
    Senan EM; Abunadi I; Jadhav ME; Fati SM
    Comput Math Methods Med; 2021; 2021():8500314. PubMed ID: 34966445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting Chronic Kidney Disease Using Hybrid Machine Learning Based on Apache Spark.
    Abdel-Fattah MA; Othman NA; Goher N
    Comput Intell Neurosci; 2022; 2022():9898831. PubMed ID: 35251161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of machine learning algorithms for clinical event prediction (risk of coronary heart disease).
    Beunza JJ; Puertas E; García-Ovejero E; Villalba G; Condes E; Koleva G; Hurtado C; Landecho MF
    J Biomed Inform; 2019 Sep; 97():103257. PubMed ID: 31374261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prevalence and Early Prediction of Diabetes Using Machine Learning in North Kashmir: A Case Study of District Bandipora.
    Bhat SS; Selvam V; Ansari GA; Ansari MD; Rahman MH
    Comput Intell Neurosci; 2022; 2022():2789760. PubMed ID: 36238678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human Locomotion Classification for Different Terrains Using Machine Learning Techniques.
    Negi S; Negi PCBS; Sharma S; Sharma N
    Crit Rev Biomed Eng; 2020; 48(4):199-209. PubMed ID: 33463957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of coronary heart disease in gout patients using machine learning models.
    Jiang L; Chen S; Wu Y; Zhou D; Duan L
    Math Biosci Eng; 2023 Jan; 20(3):4574-4591. PubMed ID: 36896513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. KFPredict: An ensemble learning prediction framework for diabetes based on fusion of key features.
    Qi H; Song X; Liu S; Zhang Y; Wong KKL
    Comput Methods Programs Biomed; 2023 Apr; 231():107378. PubMed ID: 36731312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Approach for Feature Selection and Classification of Diabetes Mellitus: Machine Learning Methods.
    Saxena R; Sharma SK; Gupta M; Sampada GC
    Comput Intell Neurosci; 2022; 2022():3820360. PubMed ID: 35463255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incremental Ant-Miner Classifier for Online Big Data Analytics.
    Al-Dawsari A; Al-Turaiki I; Kurdi H
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.