These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36236401)

  • 1. A Needs Learning Algorithm Applied to Stable Gait Generation of Quadruped Robot.
    Zhang H; Yin J; Wang H
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gait Planning and Stability Control of a Quadruped Robot.
    Li J; Wang J; Yang SX; Zhou K; Tang H
    Comput Intell Neurosci; 2016; 2016():9853070. PubMed ID: 27143959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward a theory of holistic needs and the brain.
    Silton NR; Flannelly LT; Flannelly KJ; Galek K
    Holist Nurs Pract; 2011; 25(5):258-65. PubMed ID: 21832931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-Phase Joint-Angle Trajectory Generation Inspired by Dog Motion for Control of Quadruped Robot.
    Choi J
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Walking motion generation, synthesis, and control for biped robot by using PGRL, LPI, and fuzzy logic.
    Li TH; Su YT; Lai SW; Hu JJ
    IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):736-48. PubMed ID: 21095871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Quadruped Robot with Three-Dimensional Flexible Legs.
    Huang W; Xiao J; Zeng F; Lu P; Lin G; Hu W; Lin X; Wu Y
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy-efficient and damage-recovery slithering gait design for a snake-like robot based on reinforcement learning and inverse reinforcement learning.
    Bing Z; Lemke C; Cheng L; Huang K; Knoll A
    Neural Netw; 2020 Sep; 129():323-333. PubMed ID: 32593929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Method of Changing Running Direction of Cheetah-Inspired Quadruped Robot.
    Ning M; Yang J; Zhang Z; Li J; Wang Z; Wei L; Feng P
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36559972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolving locomotion for a 12-DOF quadruped robot in simulated environments.
    Klaus G; Glette K; Høvin M
    Biosystems; 2013 May; 112(2):102-6. PubMed ID: 23499813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Online Gait Learning for Modular Robots with Arbitrary Shapes and Sizes.
    Weel B; D'Angelo M; Haasdijk E; Eiben AE
    Artif Life; 2017; 23(1):80-104. PubMed ID: 28140628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On Slip Detection for Quadruped Robots.
    Nisticò Y; Fahmi S; Pallottino L; Semini C; Fink G
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring Maslow's hierarchy of needs.
    Lester D
    Psychol Rep; 2013 Aug; 113(1):1027-9. PubMed ID: 24340796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ethnic Differences and Motivation Based on Maslow's Theory on Iranian Employees.
    Mousavi SH; Dargahi H
    Iran J Public Health; 2013; 42(5):516-21. PubMed ID: 23802110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linking individual differences in satisfaction with each of Maslow's needs to the Big Five personality traits and Panksepp's primary emotional systems.
    Montag C; Sindermann C; Lester D; Davis KL
    Heliyon; 2020 Jul; 6(7):e04325. PubMed ID: 32743084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation-based learning in teacher education: Using Maslow's Hierarchy of needs to conceptualize instructors' needs.
    Frei-Landau R; Levin O
    Front Psychol; 2023; 14():1149576. PubMed ID: 37089729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maslow's hierarchy of needs: a framework for achieving human potential in hospice.
    Zalenski RJ; Raspa R
    J Palliat Med; 2006 Oct; 9(5):1120-7. PubMed ID: 17040150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Bio-inspired Motivational Decision Making System for Social Robots Based on the Perception of the User.
    Maroto-Gómez M; Castro-González Á; Castillo JC; Malfaz M; Salichs MA
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30115836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An improved kernel based extreme learning machine for robot execution failures.
    Li B; Rong X; Li Y
    ScientificWorldJournal; 2014; 2014():906546. PubMed ID: 24977234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TALBOT: A Track-Leg Transformable Robot.
    Guo W; Qiu J; Xu X; Wu J
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variational Information Bottleneck Regularized Deep Reinforcement Learning for Efficient Robotic Skill Adaptation.
    Xiang G; Dian S; Du S; Lv Z
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.