These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36236477)

  • 1. Computational Optimization of Image-Based Reinforcement Learning for Robotics.
    Ferraro S; Van de Maele T; Mazzaglia P; Verbelen T; Dhoedt B
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bio-inspired grasp control in a robotic hand with massive sensorial input.
    Ascari L; Bertocchi U; Corradi P; Laschi C; Dario P
    Biol Cybern; 2009 Feb; 100(2):109-28. PubMed ID: 19066937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ACE-SNN: Algorithm-Hardware Co-design of Energy-Efficient & Low-Latency Deep Spiking Neural Networks for 3D Image Recognition.
    Datta G; Kundu S; Jaiswal AR; Beerel PA
    Front Neurosci; 2022; 16():815258. PubMed ID: 35464314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ps and Qs: Quantization-Aware Pruning for Efficient Low Latency Neural Network Inference.
    Hawks B; Duarte J; Fraser NJ; Pappalardo A; Tran N; Umuroglu Y
    Front Artif Intell; 2021; 4():676564. PubMed ID: 34308339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variational Information Bottleneck Regularized Deep Reinforcement Learning for Efficient Robotic Skill Adaptation.
    Xiang G; Dian S; Du S; Lv Z
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RL-DOVS: Reinforcement Learning for Autonomous Robot Navigation in Dynamic Environments.
    Mackay AK; Riazuelo L; Montano L
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robot-Assisted Pedestrian Regulation Based on Deep Reinforcement Learning.
    Wan Z; Jiang C; Fahad M; Ni Z; Guo Y; He H
    IEEE Trans Cybern; 2020 Apr; 50(4):1669-1682. PubMed ID: 30475740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GR-ConvNet v2: A Real-Time Multi-Grasp Detection Network for Robotic Grasping.
    Kumra S; Joshi S; Sahin F
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining expert neural networks using reinforcement feedback for learning primitive grasping behavior.
    Moussa MA
    IEEE Trans Neural Netw; 2004 May; 15(3):629-38. PubMed ID: 15384551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy-efficient and damage-recovery slithering gait design for a snake-like robot based on reinforcement learning and inverse reinforcement learning.
    Bing Z; Lemke C; Cheng L; Huang K; Knoll A
    Neural Netw; 2020 Sep; 129():323-333. PubMed ID: 32593929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimum trajectory learning in musculoskeletal systems with model predictive control and deep reinforcement learning.
    Denizdurduran B; Markram H; Gewaltig MO
    Biol Cybern; 2022 Dec; 116(5-6):711-726. PubMed ID: 35951117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reinforcement learning algorithms for robotic navigation in dynamic environments.
    Yen GG; Hickey TW
    ISA Trans; 2004 Apr; 43(2):217-30. PubMed ID: 15098582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kernel dynamic policy programming: Applicable reinforcement learning to robot systems with high dimensional states.
    Cui Y; Matsubara T; Sugimoto K
    Neural Netw; 2017 Oct; 94():13-23. PubMed ID: 28732231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantization Friendly MobileNet (QF-MobileNet) Architecture for Vision Based Applications on Embedded Platforms.
    Kulkarni U; S M M; Gurlahosur SV; Bhogar G
    Neural Netw; 2021 Apr; 136():28-39. PubMed ID: 33429131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grasping learning, optimization, and knowledge transfer in the robotics field.
    Pozzi L; Gandolla M; Pura F; Maccarini M; Pedrocchi A; Braghin F; Piga D; Roveda L
    Sci Rep; 2022 Mar; 12(1):4481. PubMed ID: 35296691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Post-training Quantization Method for the Design of Fixed-Point-Based FPGA/ASIC Hardware Accelerators for LSTM/GRU Algorithms.
    Rapuano E; Pacini T; Fanucci L
    Comput Intell Neurosci; 2022; 2022():9485933. PubMed ID: 35602644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Online Gait Learning for Modular Robots with Arbitrary Shapes and Sizes.
    Weel B; D'Angelo M; Haasdijk E; Eiben AE
    Artif Life; 2017; 23(1):80-104. PubMed ID: 28140628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimistic reinforcement learning by forward Kullback-Leibler divergence optimization.
    Kobayashi T
    Neural Netw; 2022 Aug; 152():169-180. PubMed ID: 35533503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MOSAIC for multiple-reward environments.
    Sugimoto N; Haruno M; Doya K; Kawato M
    Neural Comput; 2012 Mar; 24(3):577-606. PubMed ID: 22168558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural network-based model predictive tracking control of an uncertain robotic manipulator with input constraints.
    Kang E; Qiao H; Gao J; Yang W
    ISA Trans; 2021 Mar; 109():89-101. PubMed ID: 33616059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.