These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 36236538)

  • 1. Detecting Pest-Infested Forest Damage through Multispectral Satellite Imagery and Improved UNet+.
    Zhang J; Cong S; Zhang G; Ma Y; Zhang Y; Huang J
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential of Unmanned Aerial Vehicle Red-Green-Blue Images for Detecting Needle Pests: A Case Study with
    Bai L; Huang X; Dashzebeg G; Ariunaa M; Yin S; Bao Y; Bao G; Tong S; Dorjsuren A; Davaadorj E
    Insects; 2024 Mar; 15(3):. PubMed ID: 38535368
    [No Abstract]   [Full Text] [Related]  

  • 3. Quantifying pine processionary moth defoliation in a pine-oak mixed forest using unmanned aerial systems and multispectral imagery.
    Cardil A; Otsu K; Pla M; Silva CA; Brotons L
    PLoS One; 2019; 14(3):e0213027. PubMed ID: 30889176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of satellite remote sensing and MaxEnt modeling for improved detection and management of forest pests.
    Mori N; Yamashita M; Inoue MN
    Environ Monit Assess; 2024 Jun; 196(7):616. PubMed ID: 38874785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring forest dynamics with multi-scale and time series imagery.
    Huang C; Zhou Z; Wang D; Dian Y
    Environ Monit Assess; 2016 May; 188(5):273. PubMed ID: 27056478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of leaf area index using WorldView-2 and Aster satellite image: a case study from Turkey.
    Günlü A; Keleş S; Ercanlı İ; Şenyurt M
    Environ Monit Assess; 2017 Oct; 189(11):538. PubMed ID: 28980089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved Agricultural Field Segmentation in Satellite Imagery Using TL-ResUNet Architecture.
    Safarov F; Temurbek K; Jamoljon D; Temur O; Chedjou JC; Abdusalomov AB; Cho YI
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of the vegetation indices on Sentinel-2A images for predicting the soil productivity potential in Bursa, Turkey.
    Dedeoğlu M; Başayiğit L; Yüksel M; Kaya F
    Environ Monit Assess; 2019 Dec; 192(1):16. PubMed ID: 31814052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of oil pollution impacts on vegetation using multifrequency SAR, multispectral images with fuzzy forest and random forest methods.
    Ozigis MS; Kaduk JD; Jarvis CH; da Conceição Bispo P; Balzter H
    Environ Pollut; 2020 Jan; 256():113360. PubMed ID: 31672372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FAPNET: Feature Fusion with Adaptive Patch for Flood-Water Detection and Monitoring.
    Islam MDS; Sun X; Wang Z; Cheng I
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping and Tracking Forest Burnt Areas in the Indio Maiz Biological Reserve Using Sentinel-3 SLSTR and VIIRS-DNB Imagery.
    Chiang SH; Ulloa NI
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detecting the effects of hydrocarbon pollution in the Amazon forest using hyperspectral satellite images.
    Arellano P; Tansey K; Balzter H; Boyd DS
    Environ Pollut; 2015 Oct; 205():225-39. PubMed ID: 26074164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extraction of Long Time-Series Vegetation Indices from Combined Multisource Satellite Imagery.
    Liu Y; Li W; Li L; Zhang N
    Comput Intell Neurosci; 2022; 2022():3901372. PubMed ID: 35676958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Segmentation and detection of crop pests using novel U-Net with hybrid deep learning mechanism.
    Biradar N; Hosalli G
    Pest Manag Sci; 2024 Aug; 80(8):3795-3807. PubMed ID: 38506377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparative study of remote sensing classification methods for monitoring and assessing desert vegetation using a UAV-based multispectral sensor.
    Al-Ali ZM; Abdullah MM; Asadalla NB; Gholoum M
    Environ Monit Assess; 2020 May; 192(6):389. PubMed ID: 32447581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fusion of Dense Airborne LiDAR and Multispectral Sentinel-2 and Pleiades Satellite Imagery for Mapping Riparian Forest Species Biodiversity at Tree Level.
    Njimi H; Chehata N; Revers F
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cotton aphid infestation monitoring using Sentinel-2 MSI imagery coupled with derivative of ratio spectroscopy and random forest algorithm.
    Fu H; Zhao H; Song R; Yang Y; Li Z; Zhang S
    Front Plant Sci; 2022; 13():1029529. PubMed ID: 36523613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping burned areas in Thailand using Sentinel-2 imagery and OBIA techniques.
    Suwanprasit C; Shahnawaz
    Sci Rep; 2024 Apr; 14(1):9609. PubMed ID: 38671156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forest Disturbance Monitoring Using Cloud-Based Sentinel-2 Satellite Imagery and Machine Learning.
    Molnár T; Király G
    J Imaging; 2024 Jan; 10(1):. PubMed ID: 38248999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Submerged macrophyte assessment in rivers: An automatic mapping method using Pléiades imagery.
    Espel D; Courty S; Auda Y; Sheeren D; Elger A
    Water Res; 2020 Nov; 186():116353. PubMed ID: 32919140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.