These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36236549)

  • 21. Enhancing the Bandwidth and Energy Production of Piezoelectric Energy Harvester Using Novel Multimode Bent Branched Beam Design for Human Motion Application.
    Piyarathna IE; Lim YY; Edla M; Thabet AM; Ucgul M; Lemckert C
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772411
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficiency enhancement of a cantilever-based vibration energy harvester.
    Kubba AE; Jiang K
    Sensors (Basel); 2013 Dec; 14(1):188-211. PubMed ID: 24366177
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vibration Energy Harvesting by Means of Piezoelectric Patches: Application to Aircrafts.
    Tommasino D; Moro F; Bernay B; De Lumley Woodyear T; de Pablo Corona E; Doria A
    Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009904
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Self-Powered Insole for Human Motion Recognition.
    Han Y; Cao Y; Zhao J; Yin Y; Ye L; Wang X; You Z
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27649188
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Laser-machined piezoelectric cantilevers for mechanical energy harvesting.
    Kim H; Bedekar V; Islam RA; Lee WH; Leo D; Priya S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Sep; 55(9):1900-5. PubMed ID: 18986886
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vibration energy harvester with sustainable power based on a single-crystal piezoelectric cantilever array.
    Kim M; Lee SK; Ham YH; Yang YS; Kwon JK; Kwon KH
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6283-6. PubMed ID: 22962737
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of Energy Harvesting Enhancement in Piezoelectric Unimorph Cantilevers.
    Rahimzadeh M; Samadi H; Mohammadi NS
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960555
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Frequency Up-Converted Hybrid Energy Harvester Using Transverse Impact-Driven Piezoelectric Bimorph for Human-Limb Motion.
    Halim MA; Kabir MH; Cho H; Park JY
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31618939
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Working characteristics of a magnetostrictive vibration energy harvester for rotating car wheels.
    Liu H; Dong W; Chang Y; Gao Y; Li W
    Rev Sci Instrum; 2022 May; 93(5):055001. PubMed ID: 35649761
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Piezoelectric energy harvesting in internal fluid flow.
    Lee HJ; Sherrit S; Tosi LP; Walkemeyer P; Colonius T
    Sensors (Basel); 2015 Oct; 15(10):26039-62. PubMed ID: 26473879
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vibration energy harvesting based on integrated piezoelectric components operating in different modes.
    Hu J; Jong J; Zhao C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):386-94. PubMed ID: 20178904
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Novel Bird-Shape Broadband Piezoelectric Energy Harvester for Low Frequency Vibrations.
    Yu H; Zhang X; Shan X; Hu L; Zhang X; Hou C; Xie T
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838122
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Piezoelectric Energy Harvesting from Low-Frequency Vibrations Based on Magnetic Plucking and Indirect Impacts.
    Rosso M; Nastro A; BaĆ¹ M; Ferrari M; Ferrari V; Corigliano A; Ardito R
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957468
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Scour Damage Detection and Structural Health Monitoring of a Laboratory-Scaled Bridge Using a Vibration Energy Harvesting Device.
    Fitzgerald PC; Malekjafarian A; Bhowmik B; Prendergast LJ; Cahill P; Kim CW; Hazra B; Pakrashi V; OBrien EJ
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31174260
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies.
    Xue H; Hu Y; Wang QM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Sep; 55(9):2104-8. PubMed ID: 18986908
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire. A technology for harvesting electricity from the environment.
    Song J; Zhou J; Wang ZL
    Nano Lett; 2006 Aug; 6(8):1656-62. PubMed ID: 16895352
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigating the influence of the viscoelastic material as a heart muscle simulator on the powering leadless pacemaker from heartbeats by using a piezoelectric beam.
    Siami M; Jahani K; Esmaili P; Rezaee M
    Proc Inst Mech Eng H; 2022 Sep; 236(9):1414-1429. PubMed ID: 35861574
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimentally Verified Analytical Models of Piezoelectric Cantilevers in Different Design Configurations.
    Machu Z; Rubes O; Sevecek O; Hadas Z
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695974
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance.
    Wang P; Du H
    Rev Sci Instrum; 2015 Jul; 86(7):075002. PubMed ID: 26233403
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Secondary Resonance Energy Harvesting with Quadratic Nonlinearity.
    Zhang G; Zhang B
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32751856
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.