These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Increasing accuracy of pulse transit time measurements by automated elimination of distorted photoplethysmography waves. van Velzen MHN; Loeve AJ; Niehof SP; Mik EG Med Biol Eng Comput; 2017 Nov; 55(11):1989-2000. PubMed ID: 28361357 [TBL] [Abstract][Full Text] [Related]
3. A Novel Broadband Forcecardiography Sensor for Simultaneous Monitoring of Respiration, Infrasonic Cardiac Vibrations and Heart Sounds. Andreozzi E; Gargiulo GD; Esposito D; Bifulco P Front Physiol; 2021; 12():725716. PubMed ID: 34867438 [TBL] [Abstract][Full Text] [Related]
4. Monitoring arterial pulse waves with synchronous body sensor network. Peltokangas M; Vehkaoja A; Verho J; Huotari M; Röning J; Lekkala J IEEE J Biomed Health Inform; 2014 Nov; 18(6):1781-7. PubMed ID: 25375677 [TBL] [Abstract][Full Text] [Related]
5. In vivo investigation of ear canal pulse oximetry during hypothermia. Budidha K; Kyriacou PA J Clin Monit Comput; 2018 Feb; 32(1):97-107. PubMed ID: 28130679 [TBL] [Abstract][Full Text] [Related]
6. Investigation of photoplethysmographic signals and blood oxygen saturation values obtained from human splanchnic organs using a fiber optic sensor. Hickey M; Samuels N; Randive N; Langford RM; Kyriacou PA J Clin Monit Comput; 2011 Aug; 25(4):245-55. PubMed ID: 21953382 [TBL] [Abstract][Full Text] [Related]
7. An in vivo investigation of photoplethysmographic signals and preliminary pulse oximetry estimation from the bowel using a new fiberoptic sensor. Hickey M; Samuels N; Randive N; Langford RM; Kyriacou PA Anesth Analg; 2011 May; 112(5):1104-9. PubMed ID: 21346164 [TBL] [Abstract][Full Text] [Related]
9. Investigation of Photoplethysmography Behind the Ear for Pulse Oximetry in Hypoxic Conditions with a Novel Device (SPYDR). Bradke B; Everman B Biosensors (Basel); 2020 Apr; 10(4):. PubMed ID: 32260393 [TBL] [Abstract][Full Text] [Related]
10. Investigation of photoplethysmographic signals and blood oxygen saturation values on healthy volunteers during cuff-induced hypoperfusion using a multimode PPG/SpO₂ sensor. Shafique M; Kyriacou PA; Pal SK Med Biol Eng Comput; 2012 Jun; 50(6):575-83. PubMed ID: 22555629 [TBL] [Abstract][Full Text] [Related]
11. Modeling arterial pulse waves in healthy aging: a database for in silico evaluation of hemodynamics and pulse wave indexes. Charlton PH; Mariscal Harana J; Vennin S; Li Y; Chowienczyk P; Alastruey J Am J Physiol Heart Circ Physiol; 2019 Nov; 317(5):H1062-H1085. PubMed ID: 31442381 [TBL] [Abstract][Full Text] [Related]
12. Comparison of photoplethysmogram measured from wrist and finger and the effect of measurement location on pulse arrival time. Rajala S; Lindholm H; Taipalus T Physiol Meas; 2018 Aug; 39(7):075010. PubMed ID: 29794339 [TBL] [Abstract][Full Text] [Related]
13. Benchmarking of Sensor Configurations and Measurement Sites for Out-of-the-Lab Photoplethysmography. Supelnic MN; Ferreira AF; Bota PJ; Brás-Rosário L; Plácido da Silva H Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38203076 [TBL] [Abstract][Full Text] [Related]
14. Photoplethysmography for blood volumes and oxygenation changes during intermittent vascular occlusions. Abay TY; Kyriacou PA J Clin Monit Comput; 2018 Jun; 32(3):447-455. PubMed ID: 28547651 [TBL] [Abstract][Full Text] [Related]
15. Parameters Extracted From Arterial Pulse Waves as Markers of Atherosclerotic Changes: Performance and Repeatability. Peltokangas M; Telembeci AA; Verho J; Mattila VM; Romsi P; Vehkaoja A; Lekkala J; Oksala N IEEE J Biomed Health Inform; 2018 May; 22(3):750-757. PubMed ID: 28287995 [TBL] [Abstract][Full Text] [Related]
16. Investigation of photoplethysmography and arterial blood oxygen saturation from the ear-canal and the finger under conditions of artificially induced hypothermia. Budidha K; Kyriacou PA Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():7954-7. PubMed ID: 26738137 [TBL] [Abstract][Full Text] [Related]
17. Monte Carlo Analysis of Optical Interactions in Reflectance and Transmittance Finger Photoplethysmography. Chatterjee S; Kyriacou PA Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30769957 [TBL] [Abstract][Full Text] [Related]
18. Age Dependence of Arterial Pulse Wave Parameters Extracted From Dynamic Blood Pressure and Blood Volume Pulse Waves. Peltokangas M; Vehkaoja A; Verho J; Mattila VM; Romsi P; Lekkala J; Oksala N IEEE J Biomed Health Inform; 2017 Jan; 21(1):142-149. PubMed ID: 26625436 [TBL] [Abstract][Full Text] [Related]
19. Optimal fiducial points for pulse rate variability analysis from forehead and finger photoplethysmographic signals. Peralta E; Lazaro J; Bailon R; Marozas V; Gil E Physiol Meas; 2019 Feb; 40(2):025007. PubMed ID: 30669123 [TBL] [Abstract][Full Text] [Related]
20. Exploration and validation of alternate sensing methods for wearable continuous pulse transit time measurement using optical and bioimpedance modalities. Ibrahim B; Nathan V; Jafari R Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2051-2055. PubMed ID: 29060300 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]